2,151 research outputs found

    Is the present expansion of the universe really accelerating?

    Get PDF
    The current observations are usually explained by an accelerating expansion of the present universe. However, with the present quality of the supernovae Ia data, the allowed parameter space is wide enough to accommodate the decelerating models as well. This is shown by considering a particular example of the dark energy equation-of-state wϕpϕ/ρϕ=1/3w_\phi\equiv p_\phi/\rho_\phi=-1/3, which is equivalent to modifying the \emph{geometrical curvature} index kk of the standard cosmology by shifting it to (kα)(k-\alpha) where α\alpha is a constant. The resulting decelerating model is consistent with the recent CMB observations made by WMAP, as well as, with the high redshift supernovae Ia data including SN 1997ff at z=1.755z= 1.755. It is also consistent with the newly discovered supernovae SN 2002dc at z=0.475z=0.475 and SN 2002dd at z=0.95z=0.95 which have a general tendency to improve the fit.Comment: Replaced with the accepted version to appear in MNRA

    Modeling Repulsive Gravity with Creation

    Get PDF
    There is a growing interest in the cosmologists for theories with negative energy scalar fields and creation, in order to model a repulsive gravity. The classical steady state cosmology proposed by Bondi, Gold and Hoyle in 1948, was the first such theory which used a negative kinetic energy creation field to invoke creation of matter. We emphasize that creation plays very crucial role in cosmology and provides a natural explanation to the various explosive phenomena occurring in local (z<0.1) and extra galactic universe. We exemplify this point of view by considering the resurrected version of this theory - the quasi-steady state theory, which tries to relate creation events directly to the large scale dynamics of the universe and supplies more natural explanations of the observed phenomena. Although the theory predicts a decelerating universe at the present era, it explains successfully the recent SNe Ia observations (which require an accelerating universe in the standard cosmology), as we show in this paper by performing a Bayesian analysis of the data.Comment: The paper uses an old SNeIa dataset. With the new improved data, for example the updated gold sample (Riess et al, astro-ph/0611572), the fit improves considerably (\chi^2/DoF=197/180 and a probability of goodness-of-fit=18%

    A Century of Cosmology

    Full text link
    In the century since Einstein's anno mirabilis of 1905, our concept of the Universe has expanded from Kapteyn's flattened disk of stars only 10 kpc across to an observed horizon about 30 Gpc across that is only a tiny fraction of an immensely large inflated bubble. The expansion of our knowledge about the Universe, both in the types of data and the sheer quantity of data, has been just as dramatic. This talk will summarize this century of progress and our current understanding of the cosmos.Comment: Talk presented at the "Relativistic Astrophysics and Cosmology - Einstein's Legacy" meeting in Munich, Nov 2005. Proceedings will be published in the Springer-Verlag "ESO Astrophysics Symposia" series. 10 pages Latex with 2 figure

    The Wisconsin H-Alpha Mapper Northern Sky Survey

    Full text link
    The Wisconsin H-Alpha Mapper (WHAM) has surveyed the distribution and kinematics of ionized gas in the Galaxy above declination -30 degrees. The WHAM Northern Sky Survey (WHAM-NSS) has an angular resolution of one degree and provides the first absolutely-calibrated, kinematically-resolved map of the H-Alpha emission from the Warm Ionized Medium (WIM) within ~ +/-100 km/s of the Local Standard of Rest. Leveraging WHAM's 12 km/s spectral resolution, we have modeled and removed atmospheric emission and zodiacal absorption features from each of the 37,565 spectra. The resulting H-Alpha profiles reveal ionized gas detected in nearly every direction on the sky with a sensitivity of 0.15 R (3 sigma). Complex distributions of ionized gas are revealed in the nearby spiral arms up to 1-2 kpc away from the Galactic plane. Toward the inner Galaxy, the WHAM-NSS provides information about the WIM out to the tangent point down to a few degrees from the plane. Ionized gas is also detected toward many intermediate velocity clouds at high latitudes. Several new H II regions are revealed around early B-stars and evolved stellar cores (sdB/O). This work presents the details of the instrument, the survey, and the data reduction techniques. The WHAM-NSS is also presented and analyzed for its gross properties. Finally, some general conclusions are presented about the nature of the WIM as revealed by the WHAM-NSS.Comment: 42 pages, 14 figures (Fig 6-9 & 14 are full color); accepted for publication in 2003, ApJ, 149; Original quality figures (as well as data for the survey) are available at http://www.astro.wisc.edu/wham

    Observations of fluorescent aerosol-cloud interactions in the free troposphere at the High-Altitude Research Station Jungfraujoch

    Get PDF
    © 2016 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and re production in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/3.0/. Published by Copernicus Publications.The fluorescent nature of aerosol at a high-altitude Alpine site was studied using a wide-band integrated bioaerosol (WIBS-4) single particle multi-channel ultraviolet - light-induced fluorescence (UV-LIF) spectrometer. This was supported by comprehensive cloud microphysics and meteorological measurements with the aims of cataloguing concentrations of bio-fluorescent aerosols at this high-altitude site and also investigating possible influences of UV-fluorescent particle types on cloud-aerosol processes. Analysis of background free tropospheric air masses, using a total aerosol inlet, showed there to be a minor increase in the fluorescent aerosol fraction during in-cloud cases compared to out-of-cloud cases. The size dependence of the fluorescent aerosol fraction showed the larger aerosol to be more likely to be fluorescent with 80% of 10 μm particles being fluorescent. Whilst the fluorescent particles were in the minority (NFl/NAll = 0.27 ± 0.19), a new hierarchical agglomerative cluster analysis approach, Crawford et al. (2015) revealed the majority of the fluorescent aerosols were likely to be representative of fluorescent mineral dust. A minor episodic contribution from a cluster likely to be representative of primary biological aerosol particles (PBAP) was also observed with a wintertime baseline concentration of 0.1 ± 0.4 L-1. Given the low concentration of this cluster and the typically low ice-active fraction of studied PBAP (e.g. pseudomonas syringae), we suggest that the contribution to the observed ice crystal concentration at this location is not significant during the wintertime. © Author(s) 2016.Peer reviewedFinal Published versio

    Upper limits on stray force noise for LISA

    Full text link
    We have developed a torsion pendulum facility for LISA gravitational reference sensor ground testing that allows us to put significant upper limits on residual stray forces exerted by LISA-like position sensors on a representative test mass and to characterize specific sources of disturbances for LISA. We present here the details of the facility, the experimental procedures used to maximize its sensitivity, and the techniques used to characterize the pendulum itself that allowed us to reach a torque sensitivity below 20 fNm /sqrt{Hz} from 0.3 to 10 mHz. We also discuss the implications of the obtained results for LISA.Comment: To be published in Classical and Quantum Gravity, special issue on Amaldi5 2003 conference proceedings (10 pages, 6 figures

    Measuring random force noise for LISA aboard the LISA Pathfinder mission

    Full text link
    The LTP (LISA Testflight Package), to be flown aboard the ESA / NASA LISA Pathfinder mission, aims to demonstrate drag-free control for LISA test masses with acceleration noise below 30 fm/s^2/Hz^1/2 from 1-30 mHz. This paper describes the LTP measurement of random, position independent forces acting on the test masses. In addition to putting an overall upper limit for all source of random force noise, LTP will measure the conversion of several key disturbances into acceleration noise and thus allow a more detailed characterization of the drag-free performance to be expected for LISA.Comment: 7 pages, 3 figures. To be published in Classical and Quantum Gravity with the proceedings of the 2003 Amaldi Meetin

    Cosmology and Cosmogony in a Cyclic Universe

    Get PDF
    In this paper we discuss the properties of the quasi-steady state cosmological model (QSSC) developed in 1993 in its role as a cyclic model of the universe driven by a negative energy scalar field. We discuss the origin of such a scalar field in the primary creation process first described by F. Hoyle and J. V. Narlikar forty years ago. It is shown that the creation processes which takes place in the nuclei of galaxies are closely linked to the high energy and explosive phenomena, which are commonly observed in galaxies at all redshifts. The cyclic nature of the universe provides a natural link between the places of origin of the microwave background radiation (arising in hydrogen burning in stars), and the origin of the lightest nuclei (H, D, He3^3 and He4^4). It also allows us to relate the large scale cyclic properties of the universe to events taking place in the nuclei of galaxies. Observational evidence shows that ejection of matter and energy from these centers in the form of compact objects, gas and relativistic particles is responsible for the population of quasi-stellar objects (QSOs) and gamma-ray burst sources in the universe. In the later parts of the paper we briefly discuss the major unsolved problems of this integrated cosmological and cosmogonical scheme. These are the understanding of the origin of the intrinsic redshifts, and the periodicities in the redshift distribution of the QSOs.Comment: 51 pages including 1 figur

    Yang-Mills condensate dark energy coupled with matter and radiation

    Get PDF
    The coincidence problem is studied for the dark energy model of effective Yang-Mills condensate in a flat expanding universe during the matter-dominated stage. The YMC energy ρy(t)\rho_y(t) is taken to represent the dark energy, which is coupled either with the matter, or with both the matter and the radiation components. The effective YM Lagrangian is completely determined by quantum field theory up to 1-loop order. It is found that under very generic initial conditions and for a variety of forms of coupling, the existence of the scaling solution during the early stages and the subsequent exit from the scaling regime are inevitable. The transition to the accelerating stage always occurs around a redshift z(0.30.5)z\simeq (0.3\sim 0.5). Moreover, when the Yang-Mills condensate transfers energy into matter or into both matter and radiation, the equation of state wyw_y of the Yang-Mills condensate can cross over -1 around z2z\sim 2, and takes on a current value 1.1\simeq -1.1. This is consistent with the recent preliminary observations on supernovae Ia. Therefore, the coincidence problem can be naturally solved in the effective YMC dark energy models.Comment: 24 pages, 18 figure

    An absolute calibration system for millimeter-accuracy APOLLO measurements

    Get PDF
    Lunar laser ranging provides a number of leading experimental tests of gravitation -- important in our quest to unify General Relativity and the Standard Model of physics. The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has for years achieved median range precision at the ~2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in-situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (< 10 ps) pulses that are locked to a cesium clock. In essence, the ACS delivers photons to the APOLLO detector at exquisitely well-defined time intervals as a "truth" input against which APOLLO's timing performance may be judged and corrected. Preliminary analysis indicates no inaccuracies in APOLLO data beyond the ~3 mm level, suggesting that historical APOLLO data are of high quality and motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.Comment: 21 pages, 10 figures, submitted to Classical and Quantum Gravit
    corecore