1,341 research outputs found

    Interpretations of the Accelerating Universe

    Full text link
    It is generally argued that the present cosmological observations support the accelerating models of the universe, as driven by the cosmological constant or `dark energy'. We argue here that an alternative model of the universe is possible which explains the current observations of the universe. We demonstrate this with a reinterpretation of the magnitude-redshift relation for Type Ia supernovae, since this was the test that gave a spurt to the current trend in favour of the cosmological constant.Comment: 12 pages including 2 figures, minor revision, references added, a paragraph on the interpretation of the CMB anisotropy in the QSSC added in conclusion, general results unchanged. To appear in the October 2002 issue of the "Publications of the Astronmical Society of the Pacific

    Astrophysical implications of hypothetical stable TeV-scale black holes

    Get PDF
    We analyze macroscopic effects of TeV-scale black holes, such as could possibly be produced at the LHC, in what is regarded as an extremely hypothetical scenario in which they are stable and, if trapped inside Earth, begin to accrete matter. We examine a wide variety of TeV-scale gravity scenarios, basing the resulting accretion models on first-principles, basic, and well-tested physical laws. These scenarios fall into two classes, depending on whether accretion could have any macroscopic effect on the Earth at times shorter than the Sun's natural lifetime. We argue that cases with such effect at shorter times than the solar lifetime are ruled out, since in these scenarios black holes produced by cosmic rays impinging on much denser white dwarfs and neutron stars would then catalyze their decay on timescales incompatible with their known lifetimes. We also comment on relevant lifetimes for astronomical objects that capture primordial black holes. In short, this study finds no basis for concerns that TeV-scale black holes from the LHC could pose a risk to Earth on time scales shorter than the Earth's natural lifetime. Indeed, conservative arguments based on detailed calculations and the best-available scientific knowledge, including solid astronomical data, conclude, from multiple perspectives, that there is no risk of any significance whatsoever from such black holes.Comment: Version2: Minor corrections/fixed typos; updated reference

    Modeling Repulsive Gravity with Creation

    Get PDF
    There is a growing interest in the cosmologists for theories with negative energy scalar fields and creation, in order to model a repulsive gravity. The classical steady state cosmology proposed by Bondi, Gold and Hoyle in 1948, was the first such theory which used a negative kinetic energy creation field to invoke creation of matter. We emphasize that creation plays very crucial role in cosmology and provides a natural explanation to the various explosive phenomena occurring in local (z<0.1) and extra galactic universe. We exemplify this point of view by considering the resurrected version of this theory - the quasi-steady state theory, which tries to relate creation events directly to the large scale dynamics of the universe and supplies more natural explanations of the observed phenomena. Although the theory predicts a decelerating universe at the present era, it explains successfully the recent SNe Ia observations (which require an accelerating universe in the standard cosmology), as we show in this paper by performing a Bayesian analysis of the data.Comment: The paper uses an old SNeIa dataset. With the new improved data, for example the updated gold sample (Riess et al, astro-ph/0611572), the fit improves considerably (\chi^2/DoF=197/180 and a probability of goodness-of-fit=18%

    The Wolf effect and the Redshift of Quasars

    Full text link
    We consider a simple model, based on currently accepted models for active galactic nuclei, for a quasi-stellar object (QSO or ``quasar'') and examine the influence that correlation- induced spectral changes (``The Wolf Effect'') may have upon the redshifts of the optical emission lines.Comment: 13 pages, 3 figures. To be published in J. European Optical Soc. A: Pure and Applied Optic

    Dynamical Friction in a Gaseous Medium

    Get PDF
    Using time-dependent linear perturbation theory, we evaluate the dynamical friction force on a massive perturber M_p traveling at velocity V through a uniform gaseous medium of density rho_0 and sound speed c_s. This drag force acts in the direction -\hat V, and arises from the gravitational attraction between the perturber and its wake in the ambient medium. For supersonic motion (M=V/c_s>1), the enhanced-density wake is confined to the Mach cone trailing the perturber; for subsonic motion (M<1), the wake is confined to a sphere of radius c_s t centered a distance V t behind the perturber. Inside the wake, surfaces of constant density are hyperboloids or oblate spheroids for supersonic or subsonic perturbers, respectively, with the density maximal nearest the perturber. The dynamical drag force has the form F_df= - I 4\pi (G M_p)^2\rho_0/V^2. We evaluate I analytically; its limits are I\to M^3/3 for M>1. We compare our results to the Chandrasekhar formula for dynamical friction in a collisionless medium, noting that the gaseous drag is generally more efficient when M>1 but less efficient when M<1. To allow simple estimates of orbit evolution in a gaseous protogalaxy or proto-star cluster, we use our formulae to evaluate the decay times of a (supersonic) perturber on a near-circular orbit in an isothermal \rho\propto r^{-2} halo, and of a (subsonic) perturber on a near-circular orbit in a constant-density core. We also mention the relevance of our calculations to protoplanet migration in a circumstellar nebula.Comment: 17 pages, 5 postscript figures, to appear in ApJ 3/1/9

    Cosmological scalar fields that mimic the ΛCDM\Lambda CDM cosmological model

    Full text link
    We look for cosmologies with a scalar field (dark energy without cosmological constant), which mimic the standard ΛCDM\Lambda CDM cosmological model yielding exactly the same large-scale geometry described by the evolution of the Hubble parameter (i.e. photometric distance and angular diameter distance as functions on zz). Asymptotic behavior of the field solutions is studied in the case of spatially flat Universe with pressureless matter and separable scalar field Lagrangians (power-law kinetic term + power-law potential). Exact analytic solutions are found in some special cases. A number of models have the field solutions with infinite behavior in the past or even singular behavior at finite redshifts. We point out that introduction of the cosmological scalar field involves some degeneracy leading to lower precision in determination of Ωm\Omega_m. To remove this degeneracy additional information is needed beyond the data on large-scale geometry.Comment: VIII International Conference "Relativistic Astrophysics, Gravitation and Cosmology": May 21-23, 2008, Kyiv, Ukrain

    Using Muonic Hydrogen in Optical Spectroscopy Experiment to Detect Extra Dimensions

    Full text link
    Considering that gravitational force might deviate from Newton's inverse-square law (ISL) and become much stronger in small scale, we propose a kind of optical spectroscopy experiment to detect this possible deviation and take electronic, muonic and tauonic hydrogen atoms as examples. This experiment might be used to indirectly detect the deviation of ISL down to nanometer scale and to explore the possibility of three extra dimensions in ADD's model, while current direct gravity tests cannot break through micron scale and go beyond two extra dimensions scenario.Comment: 9 pages, 2 figures. To appear in IJT

    Cosmology and Cosmogony in a Cyclic Universe

    Get PDF
    In this paper we discuss the properties of the quasi-steady state cosmological model (QSSC) developed in 1993 in its role as a cyclic model of the universe driven by a negative energy scalar field. We discuss the origin of such a scalar field in the primary creation process first described by F. Hoyle and J. V. Narlikar forty years ago. It is shown that the creation processes which takes place in the nuclei of galaxies are closely linked to the high energy and explosive phenomena, which are commonly observed in galaxies at all redshifts. The cyclic nature of the universe provides a natural link between the places of origin of the microwave background radiation (arising in hydrogen burning in stars), and the origin of the lightest nuclei (H, D, He3^3 and He4^4). It also allows us to relate the large scale cyclic properties of the universe to events taking place in the nuclei of galaxies. Observational evidence shows that ejection of matter and energy from these centers in the form of compact objects, gas and relativistic particles is responsible for the population of quasi-stellar objects (QSOs) and gamma-ray burst sources in the universe. In the later parts of the paper we briefly discuss the major unsolved problems of this integrated cosmological and cosmogonical scheme. These are the understanding of the origin of the intrinsic redshifts, and the periodicities in the redshift distribution of the QSOs.Comment: 51 pages including 1 figur

    The Power of Brane-Induced Gravity

    Get PDF
    We study the role of the brane-induced graviton kinetic term in theories with large extra dimensions. In five dimensions we construct a model with a TeV-scale fundamental Planck mass and a {\it flat} extra dimension the size of which can be astronomically large. 4D gravity on the brane is mediated by a massless zero-mode, whereas the couplings of the heavy Kaluza-Klein modes to ordinary matter are suppressed. The model can manifest itself through the predicted deviations from Einstein theory in long distance precision measurements of the planetary orbits. The bulk states can be a rather exotic form of dark matter, which at sub-solar distances interact via strong 5D gravitational force. We show that the induced term changes dramatically the phenomenology of sub-millimeter extra dimensions. For instance, high-energy constraints from star cooling or cosmology can be substantially relaxed.Comment: 24 pages, 4 eps figures; v2 typos corrected; v3 1 ref. added; PRD versio

    Constraints on new interactions from neutron scattering experiments

    Full text link
    Constraints for the constants of hypothetical Yukawa-type corrections to the Newtonian gravitational potential are obtained from analysis of neutron scattering experiments. Restrictions are obtained for the interaction range between 10^{-12} and 10^{-7} cm, where Casimir force experiments and atomic force microscopy are not sensitive. Experimental limits are obtained also for non-electromagnetic inverse power law neutron-nucleus potential. Some possibilities are discussed to strengthen these constraints.Comment: 18 pages, 3 figure
    corecore