3,249 research outputs found

    Recordkeeping and the life‐long memory and identity needs of care‐experienced children and young people

    Get PDF
    In family settings stories, photographs and memory objects support narratives of identity and belonging. Such resources are often missing for people who were in care as children. As a result, they may be unable to fill gaps in their memories or answer simple questions about their early lives. In these circumstances, they turn to the records created about them by social workers and care providers to reconstruct personal histories. Research suggests that thousands of requests to view records for this purpose are made each year in England under the subject access provisions of data protection legislation. This article reports the findings of MIRRA , a participatory research project on the memory and identity dimensions of social care recordkeeping. Drawing on data collected during interviews and focus groups with adult care leavers, the study explores the motives and experiences of care‐experienced people who access their records in England. Findings show the practical and cultural challenges they face when doing so and the resulting impacts on well‐being. The study suggests that the development of person‐centred approaches to recordkeeping in social work, which focus on the perspectives and experiences of the individual, could better support the lifelong memory and identity needs of care‐experienced people

    A Century of Cosmology

    Full text link
    In the century since Einstein's anno mirabilis of 1905, our concept of the Universe has expanded from Kapteyn's flattened disk of stars only 10 kpc across to an observed horizon about 30 Gpc across that is only a tiny fraction of an immensely large inflated bubble. The expansion of our knowledge about the Universe, both in the types of data and the sheer quantity of data, has been just as dramatic. This talk will summarize this century of progress and our current understanding of the cosmos.Comment: Talk presented at the "Relativistic Astrophysics and Cosmology - Einstein's Legacy" meeting in Munich, Nov 2005. Proceedings will be published in the Springer-Verlag "ESO Astrophysics Symposia" series. 10 pages Latex with 2 figure

    Landscape Predictions for the Higgs Boson and Top Quark Masses

    Full text link
    If the Standard Model is valid up to scales near the Planck mass, and if the cosmological constant and Higgs mass parameters scan on a landscape of vacua, it is well known that the observed orders of magnitude of these quantities can be understood from environmental selection for large-scale structure and atoms. If in addition the Higgs quartic coupling scans, with a probability distribution peaked at low values, environmental selection for a phase having a scale of electroweak symmetry breaking much less than the Planck scale leads to a most probable Higgs mass of 106 GeV. While fluctuations below this are negligible, the upward fluctuation is 25/p GeV, where p measures the strength of the peaking of the a priori distribution of the quartic coupling. If the top Yukawa coupling also scans, the most probable top quark mass is predicted to lie in the range (174--178) GeV, providing the standard model is valid to at least 10^{17} GeV. The downward fluctuation is 35 GeV/ \sqrt{p}, suggesting that p is sufficiently large to give a very precise Higgs mass prediction. While a high reheat temperature after inflation could raise the most probable value of the Higgs mass to 118 GeV, maintaining the successful top prediction suggests that reheating is limited to about 10^8 GeV, and that the most probable value of the Higgs mass remains at 106 GeV. If all Yukawa couplings scan, then the e,u,d and t masses are understood to be outliers having extreme values induced by the pressures of strong environmental selection, while the s, \mu, c, b, \tau Yukawa couplings span only two orders of magnitude, reflecting an a priori distribution peaked around 10^{-3}. Extensions of these ideas allow order of magnitude predictions for neutrino masses, the baryon asymmetry and important parameters of cosmological inflation.Comment: 41 pages; v4: threshold corrrections for top Yukawa are correcte

    Testing extra dimensions with boundaries using Newton's law modifications

    Full text link
    Extra dimensions with boundaries are often used in the literature, to provide phenomenological models that mimic the standard model. In this context, we explore possible modifications to Newton's law due to the existence of an extra-dimensional space, at the boundary of which the gravitational field obeys Dirichlet, Neumann or mixed boundary conditions. We focus on two types of extra space, namely, the disk and the interval. As we prove, in order to have a consistent Newton's law modification (i.e., of the Yukawa-type), some of the extra-dimensional spaces that have been used in the literature, must be ruled out.Comment: Published version, title changed, 6 figure

    Minimizers with discontinuous velocities for the electromagnetic variational method

    Full text link
    The electromagnetic two-body problem has \emph{neutral differential delay} equations of motion that, for generic boundary data, can have solutions with \emph{discontinuous} derivatives. If one wants to use these neutral differential delay equations with \emph{arbitrary} boundary data, solutions with discontinuous derivatives must be expected and allowed. Surprisingly, Wheeler-Feynman electrodynamics has a boundary value variational method for which minimizer trajectories with discontinuous derivatives are also expected, as we show here. The variational method defines continuous trajectories with piecewise defined velocities and accelerations, and electromagnetic fields defined \emph{by} the Euler-Lagrange equations \emph{% on} trajectory points. Here we use the piecewise defined minimizers with the Li{\'{e}}nard-Wierchert formulas to define generalized electromagnetic fields almost everywhere (but on sets of points of zero measure where the advanced/retarded velocities and/or accelerations are discontinuous). Along with this generalization we formulate the \emph{generalized absorber hypothesis} that the far fields vanish asymptotically \emph{almost everywhere%} and show that localized orbits with far fields vanishing almost everywhere \emph{must} have discontinuous velocities on sewing chains of breaking points. We give the general solution for localized orbits with vanishing far fields by solving a (linear) neutral differential delay equation for these far fields. We discuss the physics of orbits with discontinuous derivatives stressing the differences to the variational methods of classical mechanics and the existence of a spinorial four-current associated with the generalized variational electrodynamics.Comment: corrected minor typo: piecewise differentiable on closed instead of open interval

    Novel self-assembled morphologies from isotropic interactions

    Get PDF
    We present results from particle simulations with isotropic medium range interactions in two dimensions. At low temperature novel types of aggregated structures appear. We show that these structures can be explained by spontaneous symmetry breaking in analytic solutions to an adaptation of the spherical spin model. We predict the critical particle number where the symmetry breaking occurs and show that the resulting phase diagram agrees well with results from particle simulations.Comment: 4 pages, 4 figure

    Dynamical Friction in a Gaseous Medium

    Get PDF
    Using time-dependent linear perturbation theory, we evaluate the dynamical friction force on a massive perturber M_p traveling at velocity V through a uniform gaseous medium of density rho_0 and sound speed c_s. This drag force acts in the direction -\hat V, and arises from the gravitational attraction between the perturber and its wake in the ambient medium. For supersonic motion (M=V/c_s>1), the enhanced-density wake is confined to the Mach cone trailing the perturber; for subsonic motion (M<1), the wake is confined to a sphere of radius c_s t centered a distance V t behind the perturber. Inside the wake, surfaces of constant density are hyperboloids or oblate spheroids for supersonic or subsonic perturbers, respectively, with the density maximal nearest the perturber. The dynamical drag force has the form F_df= - I 4\pi (G M_p)^2\rho_0/V^2. We evaluate I analytically; its limits are I\to M^3/3 for M>1. We compare our results to the Chandrasekhar formula for dynamical friction in a collisionless medium, noting that the gaseous drag is generally more efficient when M>1 but less efficient when M<1. To allow simple estimates of orbit evolution in a gaseous protogalaxy or proto-star cluster, we use our formulae to evaluate the decay times of a (supersonic) perturber on a near-circular orbit in an isothermal \rho\propto r^{-2} halo, and of a (subsonic) perturber on a near-circular orbit in a constant-density core. We also mention the relevance of our calculations to protoplanet migration in a circumstellar nebula.Comment: 17 pages, 5 postscript figures, to appear in ApJ 3/1/9

    On the stability of self-gravitating accreting flows

    Get PDF
    Analytic methods show stability of the stationary accretion of test fluids but they are inconclusive in the case of self-gravitating stationary flows. We investigate numerically stability of those stationary flows onto compact objects that are transonic and rich in gas. In all studied examples solutions appear stable. Numerical investigation suggests also that the analogy between sonic and event horizons holds for small perturbations of compact support but fails in the case of finite perturbations.Comment: 10 pages, accepted for publication in PR
    corecore