19 research outputs found

    Life-long course and molecular characterization of the original Dutch family with epidermolysis bullosa simplex with muscular dystrophy due to a homozygous novel plectin point mutation

    Get PDF
    Plectin is one of the largest and most versatile cytolinker proteins known. Cloned and sequenced in 1991, it was later shown to have nonsense mutations in recessive epidermolysis bullosa with muscular dystrophy. A dominant mutation in the gene was found to cause epidermolysis bullosa simplex Ogna without muscular dystrophy. Here we report the DNA sequencing of the plectin gene (PLEC1) in a Dutch family originally described in 1972 as having epidermolysis bullosa with muscular dystrophy. The results revealed homozygosity for a new plectin nonsense mutation at position 13187 and its specific 8q24 marker haplotype profile. Western blotting of cultured fibroblasts and immunofluorescence microscopy of skin biopsy confirm that the plectin protein expression is grossly reduced or absent. A summary of the life-long clinical course of the two affected brothers homozygous for the new E1914X mutation is given.</p

    Life-long course and molecular characterization of the original Dutch family with epidermolysis bullosa simplex with muscular dystrophy due to a homozygous novel plectin point mutation

    Get PDF
    Plectin is one of the largest and most versatile cytolinker proteins known. Cloned and sequenced in 1991, it was later shown to have nonsense mutations in recessive epidermolysis bullosa with muscular dystrophy. A dominant mutation in the gene was found to cause epidermolysis bullosa simplex Ogna without muscular dystrophy. Here we report the DNA sequencing of the plectin gene (PLEC1) in a Dutch family originally described in 1972 as having epidermolysis bullosa with muscular dystrophy. The results revealed homozygosity for a new plectin nonsense mutation at position 13187 and its specific 8q24 marker haplotype profile. Western blotting of cultured fibroblasts and immunofluorescence microscopy of skin biopsy confirm that the plectin protein expression is grossly reduced or absent. A summary of the life-long clinical course of the two affected brothers homozygous for the new E1914X mutation is given

    Distribution of ancestral proto-Actinopterygian chromosome arms within the genomes of 4R-derivative salmonid fishes (Rainbow trout and Atlantic salmon)

    Get PDF
    Comparative genomic studies suggest that the modern day assemblage of ray-finned fishes have descended from an ancestral grouping of fishes that possessed 12-13 linkage groups. All jawed vertebrates are postulated to have experienced two whole genome duplications (WGD) in their ancestry (2R duplication). Salmonids have experienced one additional WGD (4R duplication event) compared to most extant teleosts which underwent a further 3R WGD compared to other vertebrates. We describe the organization of the 4R chromosomal segments of the proto-rayfinned fish karyotype in Atlantic salmon and rainbow trout based upon their comparative syntenies with two model species of 3R ray-finned fishes. Results: Evidence is presented for the retention of large whole-arm affinities between the ancestral linkage groups of the ray-finned fishes, and the 50 homeologous chromosomal segments in Atlantic salmon and rainbow trout. In the comparisons between the two salmonid species, there is also evidence for the retention of large whole-arm homeologous affinities that are associated with the retention of duplicated markers. Five of the 7 pairs of chromosomal arm regions expressing the highest level of duplicate gene expression in rainbow trout share homologous synteny to the 5 pairs of homeologs with the greatest duplicate gene expression in Atlantic salmon. These regions are derived from proto-Actinopterygian linkage groups B, C, E, J and K. Conclusion: Two chromosome arms in Danio rerio and Oryzias latipes (descendants of the 3R duplication) can, in most instances be related to at least 4 whole or partial chromosomal arms in the salmonid species. Multiple arm assignments in the two salmonid species do not clearly support a 13 proto-linkage group model, and suggest that a 12 proto-linkage group arrangement (i.e., a separate single chromosome duplication and ancestral fusion/fissions/recombination within the putative G/H/I groupings) may have occurred in the more basal soft-rayed fishes. We also found evidence supporting the model that ancestral linkage group M underwent a single chromosome duplication following the 3R duplication. In the salmonids, the M ancestral linkage groups are localized to 5 whole arm, and 3 partial arm regions (i.e., 6 whole arm regions expected). Thus, 3 distinct ancestral linkage groups are postulated to have existed in the G/H and M lineage chromosomes in the ancestor of the salmonids

    The major histocompatibility class I locus in Atlantic salmon (Salmo salar L.) : polymorphism, linkage analysis and protein modelling

    No full text
    Abstract We show that a.s. all of the connected components of the Wired Spanning Forest are recurrent, proving a conjecture of Benjamini, Lyons, Peres and Schramm. Our analysis relies on a simple martingale involving the effective conductance between the endpoints of an edge in a uniform spanning tree. We believe that this martingale is of independent interest and will find further applications in the study of uniform spanning trees and forests

    Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs.

    No full text
    A quantitative trait locus (QTL) analysis of growth and fatness data from a three generation pig experiment is presented. The population of 199 F2 animals was derived from a cross between wild boar and Large White pigs. Animals were typed for 240 markers spanning 23 Morgans of 18 autosomes and the X chromosome. A series of analyses are presented within a least squares framework. First, these identify chromosomes containing loci controlling trait variation and subsequently attempt to map QTLs to locations within chromosomes. This population gives evidence for a large QTL affecting back fat and another for abdominal fat segregating on chromosome 4. The best locations for these QTLs are within 4 cM of each other and, hence, this is likely to be a single QTL affecting both traits. The allele inherited from the wild boar causes an increase in fat deposition. A QTL for intestinal length was also located in the same region on chromosome 4 and could be the same QTL with pleiotropic effects. Significant effects, owing to multiple QTLs, for intestinal length were identified on chromosomes 3 and 5. A single QTL affecting growth rate to 30 kg was located on chromosome 13 such that the Large White allele increased early growth rate, another QTL on chromosome 10 affected growth rate from 30 to 70 kg and another on chromosome 4 affected growth rate to 70 kg

    Interferon type I and type II responses in an Atlantic salmon (Salmo salar) SHK-1 cell line by the salmon TRAITS/SGP microarray

    No full text
    Interferons (IFNs) are cytokines that have proinflammatory, antiviral, and immunomodulatory effects and play a central role during a host response to pathogens. The IFN family contains both type I and type II molecules. While there are a number of type I IFNs, there is only one type II IFN. Recently both type I and type II IFN genes have been cloned in salmonid fish and recombinant proteins produced showing IFN activity. We have stimulated an Atlantic salmon cell line (SHK-1) with both type I and type II recombinant salmonid IFNs and analyzed the transcriptional response by microarray analysis. Cells were exposed to recombinant IFNs for 6 or 24 h or left unexposed as controls. RNA was hybridized to an Atlantic salmon cDNA microarray (salmon 17K feature TRAITS/SGP array) in order to assess differential gene expression in response to IFN exposure. For IFN I and II, 47 and 72 genes were stimulated, respectively; most genes were stimulated by a single IFN type, but some were affected by both IFNs, indicating coregulation of the IFN response in fish. Real-time PCR analysis was employed to confirm the microarray results for selected differentially expressed genes in both a cell line and primary leukocyte cultures

    Comparative Genome Analysis of the Primary Sex-Determining Locus in Salmonid Fishes

    Get PDF
    We compared the Y-chromosome linkage maps for four salmonid species (Arctic charr, Salvelinus alpinus; Atlantic salmon, Salmo salar; brown trout, Salmo trutta; and rainbow trout, Oncorhynchus mykiss) and a putative Y-linked marker from lake trout (Salvelinus namaycush). These species represent the three major genera within the subfamily Salmoninae of the Salmonidae. The data clearly demonstrate that different Y-chromosomes have evolved in each of the species. Arrangements of markers proximal to the sex-determining locus are preserved on homologous, but different, autosomal linkage groups across the four species studied in detail. This indicates that a small region of DNA has been involved in the rearrangement of the sex-determining region. Placement of the sex-determining region appears telomeric in brown trout, Atlantic salmon, and Arctic charr, whereas an intercalary location for SEX may exist in rainbow trout. Three hypotheses are proposed to account for the relocation: translocation of a small chromosome arm; transposition of the sex-determining gene; or differential activation of a primary sex-determining gene region among the species
    corecore