2,483 research outputs found
Polarization as a Probe to the Production Mechanisms of Charmonium in Collisions
Measurements of the polarization of \jp produced in pion-nucleus collisions
are in disagreement with leading twist QCD prediction where \jp is observed
to have negligible polarization whereas theory predicts substantial
polarization. We argue that this discrepancy cannot be due to poorly known
structure functions nor the relative production rates of \jp and .
The disagreement between theory and experiment suggests important higher twist
corrections, as has earlier been surmised from the anomalous non-factorized
nuclear -dependence of the \jp cross section.Comment: 8 page
Complete spectral energy distribution of the hot, helium-rich white dwarf RX J0503.9-2854
In the line-of-sight toward the DO-type white dwarf RX J0503.9-2854, the
density of the interstellar medium (ISM) is very low, and thus the
contamination of the stellar spectrum almost negligible. This allows us to
identify many metal lines in a wide wavelength range from the extreme
ultraviolet to the near infrared. In previous spectral analyses, many metal
lines in the ultraviolet spectrum of RX J0503.9-2854 have been identified. A
complete line list of observed and identified lines is presented here. We
compared synthetic spectra that had been calculated from model atmospheres in
non-local thermodynamical equilibrium, with observations. In total, we
identified 1272 lines (279 of them were newly assigned) in the wavelength range
from the extreme ultraviolet to the near infrared. 287 lines remain
unidentified. A close inspection of the EUV shows that still no good fit to the
observed shape of the stellar continuum flux can be achieved although He, C, N,
O, Al, Si, P, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Cr, Ni Zn, Ga, Ge, As, Kr, Zr, Mo,
Sn, Xe, and Ba are included in the stellar atmosphere models. There are two
possible reasons for the deviation between observed and synthetic flux in the
EUV. Opacities from hitherto unconsidered elements in the model-atmosphere
calculation may be missing and/or the effective temperature is slightly lower
than previously determined.Comment: 92 pages, 45 figure
Photoluminescence and Terahertz Emission from Femtosecond Laser-Induced Plasma Channels
Luminescence as a mechanism for terahertz emission from femtosecond
laser-induced plasmas is studied. By using a fully microscopic theory, Coulomb
scattering between electrons and ions is shown to lead to luminescence even for
a spatially homogeneous plasma. The spectral features introduced by the rod
geometry of laser-induced plasma channels in air are discussed on the basis of
a generalized mode-function analysis.Comment: 4 pages with 2 figures
Stellar laboratories. IX. New Se V, Sr IV - VII, Te VI, and I VI oscillator strengths and the Se, Sr, Te, and I abundances in the hot white dwarfs G191-B2B and RE 0503-289
To analyze spectra of hot stars, advanced non-local thermodynamic equilibrium
(NLTE) model-atmosphere techniques are mandatory. Reliable atomic data is for
the calculation of such model atmospheres.
We aim to calculate new Sr IV - VII oscillator strengths to identify for the
first time Sr spectral lines in hot white dwarf (WD) stars and to determine the
photospheric Sr abundances. o measure the abundances of Se, Te, and I in hot
WDs, we aim to compute new Se V, Te VI, and I VI oscillator strengths.
To consider radiative and collisional bound-bound transitions of Se V, Sr IV
- VII, Te VI, and I VI in our NLTE atmosphere models, we calculated oscillator
strengths for these ions.
We newly identified four Se V, 23 Sr V, 1 Te VI, and three I VI lines in the
ultraviolet (UV) spectrum of RE0503-289. We measured a photospheric Sr
abundance of 6.5 +3.8/-2.4 x 10**-4 (mass fraction, 9500 - 23800 times solar).
We determined the abundances of Se (1.6 +0.9/-0.6 x 10**-3, 8000 - 20000), Te
(2.5 +1.5/-0.9 x 10**-4, 11000 - 28000), and I (1.4 +0.8/-0.5 x 10**-5, 2700 -
6700). No Se, Sr, Te, and I line was found in the UV spectra of G191-B2B and we
could determine only upper abundance limits of approximately 100 times solar.
All identified Se V, Sr V, Te VI, and I VI lines in the UV spectrum of
RE0503-289 were simultaneously well reproduced with our newly calculated
oscillator strengths.Comment: 26 pages, 5 figure
Search for trans-iron elements in hot, helium-rich white dwarfs with the HST Cosmic Origins Spectrograph
The metal abundances in the atmospheres of hot white dwarfs (WDs) entering
the cooling sequence are determined by the preceding Asymptotic Giant Branch
(AGB) evolutionary phase and, subsequently, by the onset of gravitational
settling and radiative levitation. In this paper, we investigate three hot
He-rich WDs, which are believed to result from a late He-shell flash. During
such a flash, the He-rich intershell matter is dredged up and dominates the
surface chemistry. Hence, in contrast to the usual H-rich WDs, their spectra
allow direct access to s-process element abundances in the intershell that were
synthesized during the AGB stage. In order to look for trans-iron group
elements (atomic number Z>29), we performed a non-local thermodynamic
equilibrium model atmosphere analysis of new ultraviolet spectra taken with the
Cosmic Origins Spectrograph aboard the Hubble Space Telescope. One of our
program stars is of PG1159 spectral type; this star, PG1707+427, has effective
temperature Teff=85,000 K, and surface gravity logg=7.5. The two other stars
are DO white dwarfs: WD0111+002 has Teff=58,000 K and logg=7.7, and PG0109+111
has Teff=70,000 K and logg=8.0. These stars trace the onset of element
diffusion during early WD evolution. While zinc is the only trans-iron element
we could detect in the PG1159 star, both DOs exhibit lines from Zn, Ga, Ge, Se;
one additionally exhibits lines from Sr, Sn, Te, and I and the other from As.
Generally, the trans-iron elements are very abundant in the DOs, meaning that
radiative levitation must be acting. Most extreme is the almost six orders of
magnitude oversolar abundance of tellurium in PG0109+111. In terms of mass
fraction, it is the most abundant metal in the atmosphere. The two DOs join the
hitherto unique hot DO RE0503-289, in which 14 trans-iron elements had even
been identified.Comment: A&A accepte
Excitonic Photoluminescence in Semiconductor Quantum Wells: Plasma versus Excitons
Time-resolved photoluminescence spectra after nonresonant excitation show a
distinct 1s resonance, independent of the existence of bound excitons. A
microscopic analysis identifies excitonic and electron-hole plasma
contributions. For low temperatures and low densities the excitonic emission is
extremely sensitive to even minute optically active exciton populations making
it possible to extract a phase diagram for incoherent excitonic populations.Comment: 9 pages, 4 figure
Influence of Coulomb and Phonon Interaction on the Exciton Formation Dynamics in Semiconductor Heterostructures
A microscopic theory is developed to analyze the dynamics of exciton
formation out of incoherent carriers in semiconductor heterostructures. The
carrier Coulomb and phonon interaction is included consistently. A cluster
expansion method is used to systematically truncate the hierarchy problem. By
including all correlations up to the four-point (i.e. two-particle) level, the
fundamental fermionic substructure of excitons is fully included. The analysis
shows that the exciton formation is an intricate process where Coulomb
correlations rapidly build up on a picosecond time scale while phonon dynamics
leads to true exciton formation on a slow nanosecond time scale.Comment: 18 pages, 7 figure
- …