291 research outputs found

    Active Sampling-based Binary Verification of Dynamical Systems

    Full text link
    Nonlinear, adaptive, or otherwise complex control techniques are increasingly relied upon to ensure the safety of systems operating in uncertain environments. However, the nonlinearity of the resulting closed-loop system complicates verification that the system does in fact satisfy those requirements at all possible operating conditions. While analytical proof-based techniques and finite abstractions can be used to provably verify the closed-loop system's response at different operating conditions, they often produce conservative approximations due to restrictive assumptions and are difficult to construct in many applications. In contrast, popular statistical verification techniques relax the restrictions and instead rely upon simulations to construct statistical or probabilistic guarantees. This work presents a data-driven statistical verification procedure that instead constructs statistical learning models from simulated training data to separate the set of possible perturbations into "safe" and "unsafe" subsets. Binary evaluations of closed-loop system requirement satisfaction at various realizations of the uncertainties are obtained through temporal logic robustness metrics, which are then used to construct predictive models of requirement satisfaction over the full set of possible uncertainties. As the accuracy of these predictive statistical models is inherently coupled to the quality of the training data, an active learning algorithm selects additional sample points in order to maximize the expected change in the data-driven model and thus, indirectly, minimize the prediction error. Various case studies demonstrate the closed-loop verification procedure and highlight improvements in prediction error over both existing analytical and statistical verification techniques.Comment: 23 page

    On the stability and spectrum of non-supersymmetric AdS(5) solutions of M-theory compactified on Kahler-Einstein spaces

    Full text link
    Eleven-dimensional supergravity admits non-supersymmetric solutions of the form AdS(5)xM(6) where M(6) is a positive Kahler-Einstein space. We show that the necessary and sufficient condition for such solutions to be stable against linearized bosonic supergravity perturbations can be expressed as a condition on the spectrum of the Laplacian acting on (1,1)-forms on M(6). For M(6)=CP(3), this condition is satisfied, although there are scalars saturating the Breitenlohner-Freedman bound. If M(6) is a product S(2)xM(4) (where M(4) is Kahler-Einstein) then there is an instability if M(4) has a continuous isometry. We show that a potential non-perturbative instability due to 5-brane nucleation does not occur. The bosonic Kaluza-Klein spectrum is determined in terms of eigenvalues of operators on M(6).Comment: 21 pages. v2: Includes SU(4) quantum numbers for CP3 case, typos fixed, refs adde

    Management and Evaluation of Patient Satisfaction to Health Care in the Pediatric Clinic of the University Clinical Center of Kosovo

    Get PDF
    The aim of this research is to reflect the real data with the approach of health services in the University Clinical Center of Kosovo and also have received different opinions from parents of children who have been hospitalized in the pediatrics clinic than they were satisfied with the provision of this clinical services offered.Keywords: health management, evaluation of satisfaction of patients to health services, Pediatrics Clinic

    Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers

    Get PDF
    BACKGROUND: Telomere shortening in blood leukocytes has been associated with increased morbidity and death from cardiovascular disease and cancer, but determinants of shortened telomeres, a molecular feature of biological aging, are still largely unidentified. Traffic pollution has been linked with both cardiovascular and cancer risks, particularly in older subjects. Whether exposure to traffic pollution is associated with telomere shortening has never been evaluated. METHODS: We measured leukocyte telomere length (LTL) by real-time PCR in blood DNA from 77 traffic officers exposed to high levels of traffic pollutants and 57 office workers (referents). Airborne benzene and toluene, as tracers for traffic exposure, were measured using personal passive samplers and gas-chromatography/flame-ionization detector analysis. We used covariate-adjusted multivariable models to test the effects of the exposure on LTL and obtain adjusted LTL means and 95\% Confidence Intervals (CIs). RESULTS: Adjusted mean LTL was 1.10 (95\%CI 1.04-1.16) in traffic officers and 1.27 in referents (95\%CI 1.20-1.35) [p < 0.001]. LTL decreased in association with age in both traffic officers (p = 0.01) and referents (p = 0.001), but traffic officers had shorter LTL within each age category. Among traffic officers, adjusted mean relative LTL was shorter in individuals working in high (n = 45, LTL = 1.02, 95\%CI 0.96-1.09) compared to low traffic intensity (n = 32, LTL = 1.22, 95\%CI 1.13-1.31) [p < 0.001]. In the entire study population, LTL decreased with increasing levels of personal exposure to benzene (p = 0.004) and toluene (p = 0.008). CONCLUSION: Our results indicate that leukocyte telomere length is shortened in subjects exposed to traffic pollution, suggesting evidence of early biological aging and disease risk
    • …
    corecore