5 research outputs found

    Larger, Lighter Space Telescopes by Implementing In-Space Manufacturing Concepts

    Get PDF
    There is a continuous demand for larger, lighter, and higher quality telescopes from both the astronomical and global surveillance communities one looking up and the other down. Enabling technologies must be developed and implemented that will allow this goal to be financially and technically feasible. The optical systems needed far high spatial resolution surveillance and astronomical applications require large optical, apertures with mention of future systems up to 150 meter in diameter. With traditional optical manufacturing technologies, large optical aperture means high mass and long fabrication lead times with associated high costs. Completely new approaches to optical fabrication must be developed to enable the fabrication of such optical systems. The cost and lead time associated with the fabrication of lightweight, high quality optical systems limits the feasible size of the optics. A primary factor in the launch cost of space optical systems is volume and mass. To minimize the mass of the high quality optics, optical fabricators implement materials with high specific stiffness and use honeycomb, or other structural minimization patterns, to support the optical surface; however, the structure must still be designed to survive launch loads. This sigmficantly adds to the fabrication difficulty and dramatically increases launch costs. One approach to minimizing launch volume and negating the need for the design to survive launch loads is to send the manufacturing facility and raw materials into space and perform the fabrication in-situ. We, are currently performing feasibility studies of initial concepts for inspace manufacturing of optical systems. By utilizing the micro-gravity and vacuum environment of space while eliminating the constraints defined by high launch forces and limited volume of the launch vehicle, the development of large, high quality glass membrane mirrors may be feasible. Several concepts were investigated to address the manufacturing of both optical surfaces and telescope structure. We will describe one of the primary approaches to utilize the space environment for optical manufacturing and describe initial results

    Calorimetric and Rheological Measurements of Three Commercial Thermosetting Prepreg Epoxies

    Get PDF
    The cure kinetics of three different thermosetting resins are investigated using differential scanning calorimetry and oscillatory shear rheometry. For the latter, two different types of plates are used, smooth plates and grooved plates; the latter are used to improve sample–plate contact. In addition, oscillatory compression rheology is used; however, machine compliance prevents accurate measurements at high conversions. A fractional conversion is defined based on the maximum storage modulus achieved at a given temperature, and is compared to the fractional conversion calculated from enthalpy measurements. As expected, the rates of reaction derived from these fractional conversions are very different for calorimetry and rheometry. However, the rates of reaction using the two types of plates are identical, although the grooved plates give much more reproducible storage moduli. A number of previously used mathematical expressions are employed to fit the calorimetric and rheological data, and the activation energies calculated from these fits are compared.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Evolutionary Design and Simulation of a Tube Crawling Inspection Robot

    No full text
    The Space Robotics Assembly Team Simulation (SpaceRATS) is an expansive concept that will hopefully lead to a space flight demonstration of a robotic team cooperatively assembling a system from its constitutive parts. A primary objective of the SpaceRATS project is to develop a generalized evolutionary design approach for multiple classes of robots. The portion of the overall SpaceRats program associated with the evolutionary design and simulation of an inspection robot's morphology is the subject of this paper. The vast majority of this effort has concentrated on the use and modification of Darwin2K, a robotic design and simulation software package, to analyze the design of a tube crawling robot. This robot is designed for carrying out inspection duties in relatively inaccessible locations within a liquid rocket engine similar to the SSME. A preliminary design of the tube crawler robot was completed, and the mechanical dynamics of the system were simulated. An evolutionary approach to optimizing a few parameters of the system was utilized, resulting in a more optimum design

    A Biologically Inspired Cooperative Multi-Robot Control Architecture

    No full text
    A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture

    Evolutionary Design of a Robotic Material Defect Detection System

    No full text
    During the post-flight inspection of SSME engines, several inaccessible regions must be disassembled to inspect for defects such as cracks, scratches, gouges, etc. An improvement to the inspection process would be the design and development of very small robots capable of penetrating these inaccessible regions and detecting the defects. The goal of this research was to utilize an evolutionary design approach for the robotic detection of these types of defects. A simulation and visualization tool was developed prior to receiving the hardware as a development test bed. A small, commercial off-the-shelf (COTS) robot was selected from several candidates as the proof of concept robot. The basic approach to detect the defects was to utilize Cadmium Sulfide (CdS) sensors to detect changes in contrast of an illuminated surface. A neural network, optimally designed utilizing a genetic algorithm, was employed to detect the presence of the defects (cracks). By utilization of the COTS robot and US sensors, the research successfully demonstrated that an evolutionarily designed neural network can detect the presence of surface defects
    corecore