119 research outputs found
Association between population prevalence of smoking and incidence of meningococcal disease in Norway, Sweden, Denmark and the Netherlands between 1975 and 2009: A population-based time series analysis
Objective: To investigate the relationship between the prevalence of smoking in the population and incidence of invasive meningococcal disease (IMD) among children under 5 years of age. Design: Retrospective, longitudinal, observational study. Poisson regression controlled for confounding factors. Setting: Norway, Sweden, Denmark and the Netherlands between 1975 and 2009. Population: Total population of approximately 35 million people in these four countries. Data sources: Data were collected from the Ministries of Health, National Statistics Bureaus and other relevant national institutes. Results: In Norway, there was a significant positive relationship between the annual prevalence of daily smokers among individuals aged 25-49 years and the incidence of IMD in children under 5 years of age, unadjusted (RR=1.04-1.06, 95% CI 1.02 to 1.07, p<0.001) and after adjustment for time of year (quarter), incidence of influenza-like illness and household crowding (RR=1.05-1.07, 95% CI 1.03 to 1.09, p<0.001). Depending on age group, the risk of IMD increased by 5.2-6.9% per 1% increase in smoking prevalence among individuals aged 25-49 years in adjusted analyses. Using limited datasets from the three other countries, unadjusted analysis showed positive associations between IMD in children related to older smokers in Sweden and the Netherlands and negative associations related to younger smokers in Sweden. However, there were no demonstrable associations between incidence of IMD and prevalence of smoking, after adjustment for the same confounding variables. Conclusions: The reduced incidence of IMD in Norway between 1975 and 2009 may partly be explained by the reduced prevalence of smoking during this period. High-quality surveillance data are required to confirm this in other countries. Strong efforts to reduce smoking in the whole population including targeted campaigns to reduce smoking among adults may have a role to play in the prevention of IMD in children
Original article title: "Comparison of therapeutic efficacy of topical corticosteroid and oral zinc sulfate-topical corticosteroid combination in the treatment of vitiligo patients: a clinical trial"
<p>Abstract</p> <p>Background</p> <p>Vitiligo is the most prevalent pigmentary disorder which occurs worldwide, with an incidence rate between 0.1-4 percent. It is anticipated that the discovery of biological pathways of vitiligo pathogenesis will provide novel therapeutic and prophylactic targets for future approaches to the treatment and prevention of vitiligo. The purposes of this study were evaluating the efficacy of supplemental zinc on the treatment of vitiligo.</p> <p>Methods</p> <p>This randomized clinical trial was conducted for a period of one year. Thirty five patients among 86 participants were eligible to entrance to the study. The patients in two equal randomized groups took topical corticosteroid and combination of oral zinc sulfate-topical corticosteroid.</p> <p>Results</p> <p>The mean of responses in the corticosteroid group and the zinc sulfate-corticosteroid combination group were 21.43% and 24.7%, respectively.</p> <p>Conclusion</p> <p>Although, the response to corticosteroid plus zinc sulfate was more than corticosteroid, there was no statistically significant difference between them. It appeared that more robust long-term randomized controlled trials on more patients, maybe with higher doses of zinc sulfate, are needed to fully establish the efficacy of oral zinc in management of vitiligo.</p> <p>Trial Registration</p> <p>chiCTRTRC10000930</p
Dietary supplementation with shiikuwasha extract attenuates dexamethasone-induced skeletal muscle atrophy in aged rats
Neuronal Sirt3 Protects against Excitotoxic Injury in Mouse Cortical Neuron Culture
BACKGROUND: Sirtuins (Sirt), a family of nicotinamide adenine nucleotide (NAD) dependent deacetylases, are implicated in energy metabolism and life span. Among the known Sirt isoforms (Sirt1-7), Sirt3 was identified as a stress responsive deacetylase recently shown to play a role in protecting cells under stress conditions. Here, we demonstrated the presence of Sirt3 in neurons, and characterized the role of Sirt3 in neuron survival under NMDA-induced excitotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: To induce excitotoxic injury, we exposed primary cultured mouse cortical neurons to NMDA (30 µM). NMDA induced a rapid decrease of cytoplasmic NAD (but not mitochondrial NAD) in neurons through poly (ADP-ribose) polymerase-1 (PARP-1) activation. Mitochondrial Sirt3 was increased following PARP-1 mediated NAD depletion, which was reversed by either inhibition of PARP-1 or exogenous NAD. We found that massive reactive oxygen species (ROS) produced under this NAD depleted condition mediated the increase in mitochondrial Sirt3. By transfecting primary neurons with a Sirt3 overexpressing plasmid or Sirt3 siRNA, we showed that Sirt3 is required for neuroprotection against excitotoxicity. CONCLUSIONS: This study demonstrated for the first time that mitochondrial Sirt3 acts as a prosurvival factor playing an essential role to protect neurons under excitotoxic injury
Mitochondrial function as a determinant of life span
Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion
Epigenetic regulation of caloric restriction in aging
The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases
Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction
Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS), which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Antioxidant and anti hyperglycemic role of wine grape powder in rats fed with a high fructose diet
l-carnosine enhanced reproductive potential of the Saccharomyces cerevisiae yeast growing on medium containing glucose as a source of carbon
- …
