133 research outputs found

    Binar Space Program: Binar-1 Results and Lessons Learned

    Get PDF
    The Binar Space Program is a recently formed space research and education group part of the Space Science and Technology Center at Curtin University in Western Australia. Recently launching the first CubeSat from the state, Binar-1, the team is making steps towards creating a sustainable mission schedule for research and education. The Binar-1 mission primary objective was to demonstrate the custom designed systems made by PhD students and engineers at the university. The main technology being demonstrated was the integrated Binar CubeSat Core, which compacted the Electrical Power System, Attitude Determination and Control System, and flight computer system into 0.25U. Alongside this, the team also aimed to learn about end-to-end spacecraft mission design and engage with the public to build an understanding of the importance of space industry and research in the country. Binar-1 was deployed from the International Space Station on the 6th of October 2021, and initially was silent for 15 days until the Binar team was able to make contact by enabling a secondary beacon. This paper will present the Binar-1 mission including the custom design, operations, failure analysis, and results before finally summarizing the lessons learned by the team while flying Western Australia’s first space capability

    Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants

    Get PDF
    The present study systematically manipulated three acoustic cues-fundamental frequency (f0), amplitude envelope, and duration-to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone. (c) 2008 Acoustical Society of America

    Binar Space Program: Mission Two Payloads and Operations Plan

    Get PDF
    The second mission of Western Australia’s Binar Space Program consists of three 1U CubeSats targeting a 2023 launch. Aiming to improve the platform for future missions, the primary purpose of Binar 2, 3 and 4 is on-orbit testing of radiation shielding alloys developed by CSIRO. In this first-of-its-kind experiment, all three simultaneously deployed Binar spacecraft will contain radiation sensing payloads to assess the efficacy of various compositions of Australian made radiation shielding alloys. Alongside this, hardware changes to the Binar platform are discussed, including deployable solar arrays, additional communications solutions, and a removable payload bay. The Iridium network will be leveraged to test its suitability for CubeSat targeted re-entry. Several software-based payloads are implemented, including on-board hardware emulation, enabling an industry partner to control the spacecraft in a demonstration of remote operations capability. An undergraduate student lead project will continue on from Binar-1 to see a star tracker flown for testing alternative methods of attitude determination. From a community perspective, strengthening the engagement between amateur radio operators and the Binar Space Program will be explored by expanding on what amateurs can do with on-orbit satellites. Lastly, autonomous agile mission planning will be tested through an on-board multipurpose simulation running on the dual-core flight computer

    CD248+ stromal cells are associated with progressive chronic kidney disease

    Get PDF
    Stromal fibroblasts are the primary cells of the kidney that produce fibrotic matrix. CD248 is a stromal marker expressed on fibroblasts and pericytes within the human kidney. Here, we tested whether CD248 expression in the kidney colocalizes with fibrosis and if it is associated with known determinants of chronic kidney disease (CKD). CD248 expression was located and quantified in situ by immunohistochemistry in kidney biopsies from 93 patients with IgA nephropathy and compared with 22 archived biopsies encompassing normal kidney tissue as control. In normal kidney tissue, CD248 was expressed by resident pericytes, stromal fibroblasts, and was upregulated in human CKD. The expression was linked to known determinants of renal progression. This relationship was maintained in a multivariate analysis with CD248 expression linked to renal survival. CD248 was expressed by a population of α-smooth muscle actin (SMA)+ myofibroblasts and α-SMA− stromal cells but not expressed on CD45+ leukocytes. Thus, CD248 defines a subset of stromal cells, including but not limited to some myofibroblasts, linked to albuminuria and tubulointerstitial damage during tissue remodeling in CKD

    Ariel - Volume 11 Number 1

    Get PDF
    Executive Editors Ellen Feldman Leonardo S. Nasca, Jr. Business Managers Barbara L. Davies Martin B. Getzow News Editor Aaron D. Bleznak Features Editor Dave Van Wagoner CAHS Editor Joan M. Greco Editorial Page Editor Samuel Markind Photography Editor Leonardo S. Nasca, Jr. Sports Editor Paul F. Mansfiel

    Self-driving Multimodal Studies at User Facilities

    Full text link
    Multimodal characterization is commonly required for understanding materials. User facilities possess the infrastructure to perform these measurements, albeit in serial over days to months. In this paper, we describe a unified multimodal measurement of a single sample library at distant instruments, driven by a concert of distributed agents that use analysis from each modality to inform the direction of the other in real time. Powered by the Bluesky project at the National Synchrotron Light Source II, this experiment is a world's first for beamline science, and provides a blueprint for future approaches to multimodal and multifidelity experiments at user facilities.Comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022). AI4Mat Worksho

    Binar Space Program: Mission 2 Update

    Get PDF
    The Binar Space Program\u27s (BSP) second mission consists of three 1U CubeSats scheduled for launch in August of 2024. Following the partial success of the BSP\u27s first mission, Binar-1, many technological improvements have been made to the Binar 1U platform. These improvements enable Binar 2, 3, and 4 to carry 0.5U of payload, which is being used by the Australian Commonwealth Scientific and Industry Research Organization (CSIRO) to test two new radiation shielding materials developed in Australia. In addition to the primary payload, each CubeSat will fly three different communication systems, new deployable solar arrays and carry operating software that will allow the amateur radio community to play capture the satellite with any of the three CubeSats. The use of three almost identical satellites allows for comparing the performance of the two radiation shielding materials against a control. One CubeSat will be flying the payload with regular aluminium shielding, and the remaining two will have different aluminium metal matrix composites made using a friction-stir additive manufacturing method. The materials are intended to be used as a lightweight alternative to standard space-grade aluminium with a higher resistance to the space radiation environment. The mission is the first test of the materials in orbit, demonstrating the suitability of the manufacturing method for space flight. The three communication systems on board include an industry-led S-band transmitter designed and built in Western Australia, a new UHF transceiver developed in-house, and an Iridium 9603 modem for reduced latency communications and higher platform reliability. The novel deployable solar arrays being flown on Binar-2, 3, and 4 were designed using a rigid-flex PCB as the structure and Shape Memory Alloy (SMA) strips as deployment actuators. The panels greatly increase the power available from the Binar CubeSat platform, enabling the increased payload space to be used more effectively for space research and technology development. Part of this additional available power is being used for the capture the satellite game that will be hosted on the three Binar CubeSats. More frequent transmissions will allow radio amateurs to locate the CubeSats more easily and program their callsign into the CubeSat beacon, capturing the satellite. Additionally, this mission aims to demonstrate several capabilities crucial to the success of future missions. Attitude determination and control using the onboard magnetometers and megnetorquers has been developed to aid directional communication and is required for sensing, imaging, and propulsion on larger missions. Due to the suspected thermal management issues on Binar-1, thermal modelling is considered a key capability for the success of future missions. Predictions derived from a simplified thermal model will be verified on orbit. The complete development of Binar-2, 3, and 4 was scheduled to take two years following the launch of Binar-1. However, due to chip shortages and knowledge loss due to the departure of engineers and graduating students, the launch was moved to 2024. This additional time was used to perform more robust testing and develop better documentation, enabling better management of the challenges experienced on future launches. Many more lessons have been learnt through the mission lifecycle which the Binar Space Program now plans to take forward into the development of a 12U CubeSat platform

    An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade

    Get PDF
    A combination therapy approach is required to improve tumor immune infiltration and patient response to immune checkpoint inhibitors that target negative regulatory receptors. Galectin-3 is a β-galactoside-binding lectin that is highly expressed within the tumor microenvironment of aggressive cancers and whose expression correlates with poor survival particularly in patients with non-small cell lung cancer (NSCLC). To examine the role of galectin-3 inhibition in NSCLC, we tested the effects of galectin-3 depletion using genetic and pharmacologic approaches on syngeneic mouse lung adenocarcinoma and human lung adenocarcinoma xenografts. Galectin-3-/- mice developed significantly smaller and fewer tumors and metastases than syngeneic C57/ Bl6 wild-type mice. Macrophage ablation retarded tumor growth, whereas reconstitution with galectin-3-positive bone marrow restored tumor growth in galectin-3-/- mice, indicating that macrophages were a major driver of the antitumor response. Oral administration of a novel small molecule galectin-3 inhibitor GB1107 reduced human and mouse lung adenocarcinoma growth and blocked metastasis in the syngeneic model. Treatment with GB1107 increased tumor M1 macrophage polarization and CD8 + T-cell infiltration. Moreover, GB1107 potentiated the effects of a PD-L1 immune checkpoint inhibitor to increase expression of cytotoxic (IFNγ, granzyme B, perforin-1, Fas ligand) and apoptotic (cleaved caspase-3) effector molecules. In summary, galectin-3 is an important regulator of lung adenocarcinoma progression. The novel galectin-3 inhibitor presented could provide an effective, nontoxic monotherapy or be used in combination with immune checkpoint inhibitors to boost immune infiltration and responses in lung adenocarcinoma and potentially other aggressive cancers. Significance: A novel and orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and metastasis and augments response to PD-L1 blockade

    What is missing in autonomous discovery: Open challenges for the community

    Full text link
    Self-driving labs (SDLs) leverage combinations of artificial intelligence, automation, and advanced computing to accelerate scientific discovery. The promise of this field has given rise to a rich community of passionate scientists, engineers, and social scientists, as evidenced by the development of the Acceleration Consortium and recent Accelerate Conference. Despite its strengths, this rapidly developing field presents numerous opportunities for growth, challenges to overcome, and potential risks of which to remain aware. This community perspective builds on a discourse instantiated during the first Accelerate Conference, and looks to the future of self-driving labs with a tempered optimism. Incorporating input from academia, government, and industry, we briefly describe the current status of self-driving labs, then turn our attention to barriers, opportunities, and a vision for what is possible. Our field is delivering solutions in technology and infrastructure, artificial intelligence and knowledge generation, and education and workforce development. In the spirit of community, we intend for this work to foster discussion and drive best practices as our field grows
    • …
    corecore