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Abstract:  

A combination therapy approach is required to improve tumor immune infiltration and patient 

response to immune checkpoint inhibitors targeting negative regulatory receptors. Galectin-3 is a 

β-galactoside-binding lectin highly expressed within the tumor microenvironment of high fatality 

cancers and its expression correlates particularly with poor survival in non-small cell lung cancer 

(NSCLC) patients. To examine the role of galectin-3 inhibition in NSCLC we tested the effects 

of galectin-3 depletion using genetic and pharmacological approaches on syngeneic mouse lung 

adenocarcinoma and human lung adenocarcinoma xenografts. We show that galectin-3
-/-

 mice 

develop significantly smaller and fewer tumors and metastases than syngeneic C57/Bl6 wild type 

mice.  We demonstrate that macrophages are a major driver of this response as macrophage 

ablation retards tumor growth whilst reconstitution with galectin-3 positive bone marrow restores 

tumor growth in galectin-3
-/-

 mice. Oral administration of a novel small molecule galectin-3 

inhibitor GB1107 reduces human and mouse lung adenocarcinoma growth and blocks metastasis 

in the syngeneic model. Treatment with GB1107 increases tumor M1 macrophage polarization 

and CD8
+
 cell infiltration. Moreover, it potentiates the effects of a PD-L1 immune checkpoint 

inhibitor, to increase expression of cytotoxic (IFN-, granzyme B, perforin-1, fas ligand) and 

apoptotic (cleaved caspase-3) effector molecules. Galectin-3 is an important regulator of lung 

adenocarcinoma progression. A novel galctin-3 inhibitor could provide effective non-toxic 

monotherapy treatment as well as in combination, boost immune-infiltration and responses to 

current immune checkpoint inhibitors in lung adenocarcinoma and potentially other high fatality 

cancers. 
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Introduction 

Globally, lung cancer is the leading cause of cancer-related mortality (1). Non-small cell lung 

carcinoma (NSCLC) comprises 80% of total lung cancer cases, with lung adenocarcinoma being 

the major subtype (1). In recent years immune checkpoint therapies targeting various negative 

regulatory receptors on tumor infiltrating cytotoxic T lymphocytes (CTLs) such as Programmed 

Death-1 (PD-1), Programmed Death-Ligand 1 (PD-L1), Cytotoxic T-Lymphocyte Associated 

Protein 4 (CTLA-4) and others, have shown unprecedented efficacy in NSCLC patients even 

against late stage disease (2). However patient response is limited, thus driving intensive 

research toward combining immune checkpoint inhibition with other targeted agents to 

overcome resistance (2).  

 

Tumor-associated macrophages (TAMs) are present in the stroma of many tumors including 

NSCLC (3). TAMs acquire an alternative (M2)-like macrophage phenotype and secrete 

angiogenic and anti-inflammatory cytokines, which contribute to the immunosuppressive milieu 

of the tumor microenvironment (4).  TAMs can also be important direct targets of PD-1/PD-L1 

inhibition and can also promote drug resistance by removing anti-PD-1 antibodies from T cells 

(5, 6). Indeed, macrophage depletion via colony-stimulating factor-1 receptor (CSF-1R) 

blockade improved T cell infiltration and antitumor activity of PD-1 antagonists in preclinical 

models of melanoma and breast cancer (7, 8), suggesting that strategies aimed at inhibiting 

macrophage responses are necessary to permit effective immune checkpoint therapy.  
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One possible target for such combination treatment is galectin-3, a member of a protein family 

defined by affinity for β-galactoside-containing glycoconjugates and a conserved carbohydrate-

recognition-binding domain (CRD) (9). Galectin-3 is widely expressed in several cell types such 

as macrophages, fibroblasts, activated T-lymphocytes and epithelial cells (10-12) and is highly 

expressed in high fatality cancers such as NSCLC (13). In NSCLC particularly in 

adenocarcinoma, increased galectin-3 expression in tumors, lymph nodes and serum correlates 

with metastases and is a negative prognostic indicator (13-18).  The galectin-3 genetic 

polymorphism rs4652 associated with impaired galectin-3 secretion, has been linked to increased 

survival and response to chemotherapy in NSCLC (18). Galectin-3 can directly enhance cell 

proliferation (19), apoptosis resistance (20), metastatic potential (19, 21), as well as lung cancer 

stemness (22). It is also an important constituent of the tumor microenvironment acting on 

endothelial cells to promote angiogenesis (23). Furthermore many studies have revealed the 

inhibitory effects of galectin-3 on activated cytotoxic T lymphocytes CTLs (24-27) and we have 

shown it to be essential for M2 macrophage differentiation (28, 29). Hence, galectin-3 forms an 

ideal candidate target for combining with checkpoint blockade. 

 

We examined the role of galectin-3 in NSCLC by utilizing the syngeneic mouse Lewis Lung 

Carcinoma (LLC1) model, comparing tumor growth in wild-type and galectin-3-deficient mice 

showing an essential non-redundant tumor-promoting role for galectin-3. Bone marrow transfer 

and macrophage depletion experiments show that macrophages are a major source of tumor 

promoting galectin-3. A newly developed, selective small molecule galectin-3 inhibitor inhibited 

mouse and human NSCLC tumor growth and metastasis and significantly potentiated response to 

an immune checkpoint blockade. 
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Materials and Methods 

 

Cell Lines, Culture and Transfections 

LLC1 cells and A549 cells were purchased from the European Cell Culture Collection (ECACC 

90020104) and were cultured at 37°C in 5% CO2 (95% air) in Dulbecco’s modified Eagles 

medium (Sigma D5671) supplemented with 10% fetal calf serum (FCS), 1% L-glutamine and 

1% penicillin/streptomycin. Vector pCMV-KDEL-Gluc-1, expressing G.princeps luciferase 

(Lux Biotechnologies) was transfected by electroporation (Lonza electroporation kit VCO-

1001). Stably transfected cells were selected with G418. LLC1-luciferase cells were transduced 

with lentiviral particles packaged in H293T cells containing either non-targeting control shRNA 

or a mouse galectin-3 targeting shRNA (G501) within a pGIPZ vector (GE Dharmacon). 

Successfully transduced cells were selected in 3μg/ml of puromycin for 10 days followed by 

flow sorting for GFP+ cells using a BD FACS-Aria.  

 

Animals 

All animal experimental work was carried out according to UK Home Office Guidelines 

(Animals (Scientific Procedures) Act 1986). C57Bl/6 mice and female CD1 nude mice were 

purchased from Harlan Laboratories. Generation of galectin-3−/− mice by gene-targeting 

technology has been described previously (30). CD11b-DTR (Diphtheria Toxin Receptor) 

mice were derived from FVB mice as described (31) and backcrossed over 10 generations 

onto the C57Bl/6 background.  Human galectin-3 knockin mice were generated by Cyagen 

Biosciences using the TurboKnockout (conditional Knockin) approach by inserting the entire 
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human LGALS3 sequence into exon 1 of mouse Lgals3 so that the expression of human 

galectin-3 is under control of the mouse gene regulatory element.  

 

Orthotopic LLC1 model 

Mice were anaesthetized with isofluorane. A 1mm skin incision was made below the right 

shoulder blade. 103 LLC1 cells stably expressing Gaussia luciferase (see supplemental 

information) were injected through the intercostal muscles into the lung parenchyma prior to 

the incision being stapled.  

 

Subcutaneous LLC1 model 

LLC1 ( 2.5x105)  cells were injected subcutaneously into the flanks of age-matched male 

wild type and galectin-3-/- C57Bl/6 mice. Each animal received an injection of 2.5x105 cells 

suspended in 100μL PBS in both flanks. Tumor volumes were measured with callipers 

every 1-3 days (tumor volume = π/6 x (LxW)
3/2

).  

 

LLC1 metastasis model 

LLC1 cells were administered via the tail vein (1x10
6
 cells) and lungs harvested at 7 days.  RNA 

was extracted from whole lungs using a Qiagen RNeasy kit, converted into cDNA (Quantitect 

cDNA synthesis kit; Qiagen) and luciferase expression was measured by qPCR using primers 

against Gaussia princeps luciferase (5’-TCTGCCTGTCCCACATCAAG-3’ forward and 3’-

CCCTGTGCGGACTCTTTGT-5’ reverse; Primer Design) and SYBR Green (ThermoFisher 

Scientific). 

 



 8 

Human adenocarcinoma xenograft model 

CD-1 nude female mice received 3x10
6
 human lung adenocarcinoma cells (A549) in 100μl 1:1 

matrigel:serum free DMEM in both flanks.  Tumor volumes were measured every 2-3 days 

using digital calipers. 

 

Macrophage ablation  

Macrophages were ablated in C57Bl/6 CD11b-DTR mice (or WT littermates) by administration 

of 10ng/g diphtheria toxin (DT) intraperitoneally (I.P.) prior to subcutaneous tumor cell 

injections.  

 

Bone Marrow transplant 

Mice were injected with 400μL liposomal clodronate (Liposoma).  After 36h mice were 

irradiated with 10.5 Gy delivered from an IBL637 gamma irradiator (Gamma Services Ltd) at a 

dose-rate of 0.64 Gy/min. Following irradiation mice received a single tail-vein infusion of 

107 bone marrow cells obtained by flushing the femurs of WT and galectin-3
-/-

 donor mice.  

Transplanted mice were used 8 weeks post-transplant.  

 

Drug preparation 

Galectin-3 inhibitor GB1107 (3,4-dichlorophenyl 3-deoxy-3-[4(3,4,5-trifluorophenyl)-1H-1,2,3-

triazol-1-yl]-1-thio-α-D-galactopyranoside; Galecto Biotech; Copenhagen, Denmark (32)) was 

prepared at a concentration of 1mg/ml in 1% polyethylene glycol, 0.5% hydroxypropyl methyl 

cellulose (HPMC) and stored in aliquots at -20
°
C.  The anti-PD-L1 monoclonal antibody (clone 

10F.9G2) used for in vivo blockade experiments was purchased from BioXCell and 200μg in 
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PBS was administered twice weekly by I.P. injection. 

 

Luciferase Assays 

LLC1 cells stably transfected with pCMV-KDEL-Gluc-1 were assessed for luciferase 

expression upon addition of n-colenterazine (n-CTZ) (Lux Biotechnologies 20001) substrate 

to a final concentration of 10μM to live cells in 96-well plates. Lymph nodes were 

disaggregated by passing through 40μm cell strainers and suspended in PBS. N-CTZ was 

added at a final concentration of 10μM. Luciferase activity was assessed with a BioTek 

SynergyTM HT Luminometer. 

 

Immunohistochemistry 

Formalin fixed paraffin embedded sections were deparaffinized in xylene and rehydrated in 

graded ethanol. Epitopes were retrieved by microwaving in 0.01M sodium citrate (pH 6) for 

Ym1, and ki-67 staining and by proteinase K digest (1.25 mg/mL) for 5 min for F4/80 

staining. Sections were blocked with serum-free protein block (DAKO) and incubated 

overnight at 4°C with primary antibodies, rabbit anti-mouse Ym1 (Stem Cell Technologies, 

1:200), rat anti-mouse F4/80 (Abcam, 1:100), rabbit anti-mouse ki-67 (Abcam, 1:200) and 

rabbit anti-mouse cleaved caspase-3 (clone 5A1, Abcam, 1:1000). Sections were incubated with 

species-specific biotinylated IgG (Vector), and visualized with 3,3’-diaminobenzidine (DAB) 

substrate.  

 

Immunohistochemistry Quantifications 



 10 

Five to ten fields were scored for each tumor representing both tumor and stroma. Absolute 

cell counts were recorded for F4/80 and Ym1 positive cells. Ki-67 positive nuclei were 

counted in whole tumors from slide scans using  Image J.  and presented as a ratio of Ki-67
+
 

nuclei/total nuclei. Cleaved caspase-3 staining in tumors was quantified by inverting 8-bit TIFF 

files so that DAB-positive areas give the highest pixel intensities. Mean pixel intensities (MPI) 

were then measured in up to 160 fields of view covering the entire tumor parenchyma and 

averaged to give a single value per tumor. F4/80 was quantified using Image J by selecting 

brown DAB+ areas using color thresholding (hue 0-128, saturation 0-255, brightness 0-170), 

inverting 8-bit TIFF files and measuring MPI. 

 

Immunofluorescence 

LLC1 cells were plated on coverslips and stained for galectin-3 with FITC conjugated rat anti-

mouse galectin-3 (1:200; clone CL8942F; Cedarlane) and Alexa Fluor 488-conjugated donkey 

anti-rat secondary antibody (1:500; clone A21208; Invitrogen) before or after permeabilisation 

with 0.2% Triton X-100 in PBS for 10mins. Cells were counterstained with DAPI and mounted 

in Prolong Gold (Life Technologies). Tumor sections were incubated with rat anti-mouse 

F4/80 followed by horseradish peroxidase (HRP)-labeled goat anti-rat IgG (DAKO) and 

tyramide green (Invitrogen).  Sections were microwaved in 0.01M sodium citrate (pH 6) for 5 

mins, re-blocked and probed with rabbit anti galectin-3 (R&D) or rabbit anti Ym1 followed by 

HRP-labeled goat anti-rabbit IgG (DAKO) and tyramide red (Invitrogen) and mounted in 

fluoromount-G with DAPI (eBioscience).  Images were captured on a Nikon Eclipse E600 

microscope.  
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RNA Extraction and RT-PCR 

Total RNA from LLC1 tumors and lung tissue was prepared using RNeasy kits (Qiagen) and 

reverse transcribed into cDNA using Quantitect RT kits (Qiagen).  cDNA was analyzed using 

either a SYBR green-based quantitative fluorescence method (Invitrogen) and Kiqstart 

primers (Sigma Aldrich) or Taqman primer probe sets (Life Technologies). 

 

SDS PAGE and Western Blotting 

Cells were lysed in NP-40 (Invitrogen) and separated by 10-15% SDS-PAGE. Proteins were 

transferred to nitrocellulose membrane and probed using antibodies against galectin-3, 1:500 

(eBioM3/38, eBioscience) and GAPDH, 1:3000 (14C10, Cell Signaling Technology) followed 

by species specific HRP-conjugated secondary antibodies (Dako). Bound antibodies were 

detected using the enhanced chemiluminescence 2 detection kit (Pierce).  

 

Tumor Dissociation and Flow cytometry 

Tumors were  minced in serum-free DMEM and digested with Liberase (2mg/ml; Sigma-

Aldrich) and DNase I (Sigma-Aldrich) at 37°C for 30mins. Disaggregated tissue was filtered 

through a 35μm nylon mesh, washed and resuspended in FACS buffer (PBS with 0.1% bovine 

serum albumin (BSA)). Fc receptors were blocked with anti-mouse CD16/32 (Biolegend). 

Antibody cocktails (anti-mouse Ly6G-pacific blue, CD11b-BV605, Galectin-3-FITC, CD45-

PerCP and CD45-APCcy7, MHC-II-PE, CD206-PEcy7, PD1-APC, F480-AF700, CD4-pacific 

blue, PD-L1 BV605, CD3-PerCPcy5.5, IFN-PE, CD8-AF700, all from Biolegend) were added 

to cells and incubated for 20mins at room temperature. Samples were fixed and RBCs were 
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simultaneously lysed in RBC Lysis/Fixation solution (Biolegend). For intracellular staining, cells 

were permeabilized with intracellular staining permeabilisation wash buffer (Biolegend) and 

incubated with anti-CD206 or anti-IFN (Biolegend). Cells were analyzed using an LSR-

Fortessa cell analyser (Beckton Dickenson). 

 

 

Statistics 

Statistical analyses were performed using Graphpad Prism 7.0 software. Results are represented 

as mean ± S.E.M and statistical tests are described in the figure legends. 
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Results  

 

Galectin-3-/- mice do not support the growth and metastasis of LLC1 tumors 

To examine lung cancer growth within the correct tissue compartment LLC1 cells stably 

expressing G. princeps-luciferase were injected (1x 10
3
 cells) through the intercostal space 

directly into the lung parenchyma of control and galectin-3-/- mice.  H&E staining of lung 

tissue confirmed the presence of tumors in control but not galectin 3 /  mouse lungs (Figure 

1A).  At 20 days post-injection 4/10 of control mice had tumors, while none of the 

galectin-3-/- mice developed tumors (Table 1). In addition, 7/10 control animals displayed 

gross swelling of the mediastinal lymph nodes (MLN) (Table 1), which were positive for 

metastatic cells as assessed by luciferase assay on homogenized MLNs. Only 1/11 of galectin

3 /  mice had luciferase positive MLNs (Table 1).  

LLC1 cells expressing luciferase were injected subcutaneously (s.c) in both flanks of WT and 

galectin-3-/- mice (n=12). After day 10, s.c. tumors from control animals were much larger 

than those of galectin-3-/- mice. This difference became statistically significant at day 12 

(p=0.0004). By the end of the study, tumors of controls had an average volume of 286mm3 

compared to a volume of 9mm3 in galectin-3-/- animals (96.9% reduction, p<0.0001) 

(Figure 1B, C). The weight of tumors from control mice was 98% heavier than that of 

galectin-3-/- mice, 153 ± 31mg and 3 ± 2mg respectively (p<0.0001) (Figure 1D). Of all the 

tumor cell injections received by each group, only 11/40 led to tumors in galectin-3-/- mice 

compared to 36/40 in controls (Table 1).  5/12 control mice had luciferase positive metastases 
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in their mediastinal lymph nodes (MLN) while galectin-3-/- mice had no metastases (Table 1). 

These results indicate that galectin-3-/- mice do not support tumor establishment and spread in a 

s.c. LLC1 model. Although LLC1 inoculation increased the serum concentrations of anti-

galectin-3 IgG antibodies in galectin-3
-/-

 mice, no correlation, either negative or positive, was 

established between antibody production and tumor volume (Figure S1). 

 

M2 macrophages are reduced in tumors from galectin-3-/- mice 

Tumor stroma F4/80
+
 macrophages were significantly higher in galectin-3-/- animals compared 

to control (p=0.0217).  However, the ratio of Ym1
+
/F480

+
 macrophages was significantly higher 

in controls (p=0.0484, Figure 2A, B), indicating that higher galectin-3 levels around the 

tumor environment can drive expansion of M2 macrophages (28).  Transcript analysis from 

whole tumor RNA showed that control tumors had 2.5-, 3.3- and 16.7-fold higher levels of 

IL-4, IL-10 and IL-13 transcripts respectively (p=0.04, 0.024, 0.119 respectively), and 

displayed a 28.8-fold reduction in IFN- mRNA when compared to galectin-3-/- tumors 

(p=0.0066, Figure 2C). These results indicate a cytokine environment that favors M2 

macrophage activation in tumors of control but not galectin-3-/- hosts and suggests an 

important role for galectin-3 in the regulation of TAM phenotype.  

 

Macrophage depletion impairs tumor initiation 

We hypothesized that tumor macrophages may contribute to tumor growth in the LLC1 model. 

C57Bl/6 CD11b-DTR transgenic mice were used as a model of macrophage ablation (33).  

CD11b-DTR transgenic mice and WT siblings received a single diphtheria toxin (DT) 

injection immediately prior to cell implant. At day 12, 15/24 tumors developed in CD11b-
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DTR mice compared to 20/22 in controls.  CD11b-DTR animals had significantly smaller 

tumor volumes compared to controls (29.4 ± 4.1 mm
3
 and 89.4 ± 0.9 mm

3
 respectively) 

(p=0.0005) (Figure 2D) and significantly reduced tumor weights (9.1 ±1.0 mg and 23.4 ± 4.0 

mg respectively) (p=0.0011) (Figure 2E).  To assess the efficiency of macrophage ablation 

in this model DT was administered to mice with established tumors and F4/80 staining carried 

out 24h after DT administration.  An 88% reduction in TAMs was observed in the tumors of 

DTR transgenic animals (p<0.0001) (Figure S2A).   LLC1 cells in vitro display cell surface and 

cytoplasmic galectin-3 staining and release galectin-3 into the culture medium (Figure S3A). 

To determine whether tumor-derived galectin-3 contributes to tumor growth galectin-3 was 

stably knocked down (KD) in LLC1 cells prior to s.c. injection (Figure S3B).  Although LLC1 

proliferation was reduced by galectn-3 KD in vitro (Figure S3C,D), tumor growth and final 

tumor weights of LLC1-galectin-3-KD cells was similar to WT cells (Figure S3E-G). 

  

Galectin-3 phenotype of bone marrow derived cells in the tumor microenvironment 

determine LLC1 tumor growth  

Tumor galectin-3 had no effect on tumor growth so we altered galectin-3 expression in 

recruited cells. Control and galectin-3-/- mice were irradiated and transplanted with 10
7
 control 

or galectin-3-/- bone marrow (BM) cells. Eight weeks post-BM transplant, LLC1 cells were 

injected subcutaneously.  Transplantation of control BM cells into galectin-3-/- mice resulted 

in significantly increased average tumor volume and final tumor weight compared to mice 

transplanted with galectin-3-/- BM cells (final tumor volume 336mm3 and final weight of 

297.6mg compared to 163.9mm3 and 124.4mg p<0.0001 and p=0.0007 respectively Figure 

2F,G). Dual immunofluorescence staining showed that the stroma of tumors harvested from 
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galectin-3-/- animals transplanted with control BM had F4/80 and galectin-3 dual positive cells 

(Figure 2H ) a l though  the  to ta l  number  o f  in f i l t ra t ing  macrophages  was  not  

d i f fe rent  be tween  cont ro l  or  ga lec t in -3
- / -

 BM t ransplanted  mice  ( Figure  

S2B )  suggesting that galectin-3 positive macrophages are recruited to the tumor stroma and 

contribute to tumor growth.  

 

High affinity galectin-3 inhibitor prevents human lung adenocarcinoma growth in vivo 

Recently a series of monosaccharide galectin-3 inhibitors with low nM affinities and good 

selectivity over other galectins have been described (32).  From this series GB1107 has high 

affinity in man at 37 nM but due to species differences in the galectin-3 carbohydrate binding 

domain (CBD), the mouse galectin-3 affinity is 38 fold lower.  GB1107 has low clearance (1.2 

ml/min/kg, t1/2 4.5 h, i.v.) and good uptake upon oral administration resulting in high oral 

availability (F = 75 %, p.o).  As a consequence, dosing GB1107 at 10 mg/kg orally once daily 

results in a plasma concentration above mouse Kd over 24h (Figure S4). CD-1 nude mice 

bearing human lung A549 adenocarcinoma xenografts were treated from day 18-post 

implantation once daily with 10mg/kg GB1107. This resulted in significantly reduced tumor 

growth and final tumor weights (46.2% smaller compared to vehicle control tumors with final 

average weights of 117 ± 16mg and 63 ± 11mg respectively (p=0.0132), Figure 3A).  

Treatment with GB1107 also inhibited growth (tumor volumes decreased 48% compared to 

controls on day 18, p<0.001) and reduced final tumor weights (47 ± 14mg versus 120 ± 29mg 

controls, p=0.0524)  when administered daily from the outset (Figure 3B).  Transcript analysis 

of tumor RNA from the LLC tumors revealed reduced galectin-3 (48% less than vehicle, 

p=0.018) and mesenchymal markers TGF- (45% less than vehicle, p=0.015) and trends for 
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reductions of VEGF and α-SMA expression (Figure 3D and S8C). There was also a trend 

towards a reduction in expression of the M2 marker Ym1 (50% less than vehicle) and CD98 

(49% less than vehicle), which drives galectin-3 mediated M2 macrophage activation (28), 

suggesting a decrease in M2 skewed TAM accumulation in the tumor.  To examine effects on 

metastasis, LLC1 cells were injected intravenously and lung colonization was determined at 7 

days post injection (Figure 3C).  The presence of metastasis was examined by expression of 

Gaussia luciferase transcript in whole lung RNA extracts. GB1107 significantly reduced tumor 

burden by 79.2%.  These data suggest that inhibition of galectin-3 with an orally active selective 

galectin-3 inhibitor can significantly reduce lung adenocarcinoma growth and metastasis in vivo.   

Mice were generated which express the human LGALS3 gene in place of the mouse gene (Hu-

Gal-3-KI).  Western blot confirmed expression of only human galectin-3 in mouse liver lysates 

from Hu-Gal-3-KI mice (Figure 3F).  LLC tumor growth was inhibited by GB1107 in Hu-Gal-

3-KI mice when administration was delayed until day 5 after inoculation (Figure 3E).   

 

Galectin-3 inhibitor blocks LLC-induced alternative macrophage activation 

Given the altered M1:M2 TAM ratio in LLC tumors from galectin-3
-/-

 mice and inhibitor treated 

mice we next determined the role of LLC derived galectin-3 on macrophage polarization. 

Conditioned media from LLC1 cells in vitro increased IL-4-stimulated arginase activity in bone 

marrow-derived macrophages (BMDMs) and increased gene expression of arginase-1 and fizz1 

(Figure S5A, C). This increase was inhibited by GB1107 suggesting galectin-3 secreted by 

LLC1 cells induces macrophages to adopt an alternative M2-like phenotype (Figure S5A, C). 

GB1107 did not affect LPS-induced Nos2 expression or nitric oxide (NO) production by 
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BMDMs (Figure S5A, B). Although our data show TAMs to be a vital determinant of tumor 

growth in vivo, treatment of LLC1 cells with inhibitor in vitro also impacted on cell proliferation 

and migration albeit at higher concentrations (Figure S5D-F), suggesting some direct effect on 

galectin-3 mediated-tumor cell expansion and migration.   

 

Galectin-3 depletion reduces M2-like macrophages and enhances infiltration of activated 

CD8 T cells 

TAMs can contribute to T cell immunosuppression (4). In particular, M2-like macrophages 

secrete more galectin-3 (34) and galectin-3 directly impedes T cell infiltration and activation 

(24-27, 35). We therefore investigated whether galectin-3 dependent M2 polarization is also 

associated with changes in T cell infiltration and activation in vivo. Flow cytometric analysis of 

tumor digests (see Figure S6 for gating strategy) from hu-Gal-3-KI mice treated with GB1107 

showed no increase in macrophage infiltration, but showed a decrease in macrophage CD206 

expression indicative of reduced M2 TAMs (Figure 4A). Similarly, while there was no 

significant change in the total number of CD3
+
 T cells, GB1107 caused an increase in CD8

+
 but 

not CD4
+
 T cells within tumors (Figure 4A). This pattern of immune infiltration was also 

observed in tumor digests from galectin-3
-/-

 mice compared to WT C57Bl/6 mice (Figure 4B). 

Moreover, in galectin-3
-/-

 tumors, infiltrating CD8 T cells but not CD4+ T cells displayed trends 

toward increased PD-1 and IFN-γ expression, together suggesting that galectin-3 depletion may 

reprogram the tumor microenvironment to favor pro-inflammatory M1-like macrophages and 

enhance cytotoxic CD8 T cell infiltration and activation. Galectin-3
-/-

 mouse tumors displayed 

no overall changes in total CD45
+
 cells, neutrophils, monocytes or dendritic cells (DCs) 

compared to WT tumors (Figure S6). 
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To assess whether other systemic changes in galectin-3 depleted mice may also influence CD8 T 

cell activation, we assessed myeloid populations within the bone marrow of WT and galectin-3
-/-

 

mice. We observed no differences in total CD11b
+
 cells, neutrophils or monocytes including 

inflammatory Ly6C
hi

 monocytes (Figure S7). There were however increased DCs in galectin-3
-

/-
 compared to WT mice, suggestive of another indirect mechanism by which galectin-3 may 

enhance anti-tumor T cell priming (26). 

 

Galectin-3 inhibitor potentiates the anti-tumor effects of PD-L1 blockade 

We next examined the effect of galectin-3 inhibition in combination with immune checkpoint 

inhibition.  In this study GB1107 treatment was delayed until day 6 post implantation.  Delayed 

administration of GB1107 alone did not reduce tumor burden and administration of an anti-PD-

L1 antibody administered twice weekly I.P from day 6 also had no impact on tumor growth. 

However, a combination of GB1107 and anti-PD-L1 antibody treatment significantly 

potentiated the effect of the single agents (49.5% and 51.4% reduced tumor volumes and 

weights respectively compared with untreated controls, (Figure 5A,B) and there was  

corresponding reduction in galectin-3 protein levels within GB1107 treated tumors (Figure 

S8F). 

The reduced tumor growth in the combination group was not associated with changes in tumor 

cell proliferation as determined by Ki-67 IHC staining (Figure S8D, E) but was instead 

associated with an increase in PD-1
+
 CD8

+
 T cells (Figure 5C, S8A-B) and reduced CD206

 

expression in macrophages (Figure 5C). This was combined with a significant increase in 

expression of T cell cytotoxic mediators (IFN-perforin-1, granzyme B and fas ligand; Figure 
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5D) and a 10.3% increase (p=0.005) in the apoptosis marker cleaved caspase-3 (Figure 5F,G). 

Together our data suggests that combination therapy with galectin-3 inhibitor GB1107 and PD-

L1 blocking antibody promotes tumor cell apoptosis and cytotoxic CD8 T cell activation.  

 

Discussion  

In this study we show that galectin-3
-/- 

mice do not support LLC1 tumor growth and deleting 

galectin-3 in bone marrow derived cells recruited to engrafted mouse lung adenocarcinomas 

inhibits tumor growth and spread despite high expression of galectin-3 in the tumor cells.  

Furthermore, macrophage depletion reduces monocyte recruitment and LLC1 tumor growth, 

confirming that depletion of macrophages with liposomal clodronate inhibits LLC1 tumor growth 

(36).  Although the spleen can be an important source of TAMs in a KRAS and P53 driven model 

of lung adenocarcinoma (37), the bone marrow compartment has been shown to be the major 

source of TAMs in the LLC1 model (38).  Therefore, we sought to restore galectin-3 in tumor 

macrophages in galectin-3
-/-

 mice by bone marrow transplant with wild type galectin-3 +ve bone 

marrow cells.  This results in an increase in tumor growth similar to that observed in wild type 

mice.  Our previous work has shown that galectin-3 is an important regulator of macrophage 

function, promoting an “M2” phenotype (28). Our data shows that macrophages in tumors 

from galectin-3
-/-

 mice or mice treated with GB1107 have reduced CD206
+
 M2-like 

macrophages and we observe reduced M2-promoting cytokine transcripts and elevated IFN- 

expression within galectin-3
-/-

 tumors.  In addition, conditioned media from LLC cells increases 

alternative activation of macrophages in vitro and this can be blocked by co-culture with 
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GB1107. This demonstrates that galectin-3 contributes to the M2 immunosuppressive function of 

TAMs. 

TAMs promote many important features of tumor progression including angiogenesis, tumor cell 

invasion, motility, and metastasis and can also suppress T cell responses (4). This data shows that 

galectin-3 expressing macrophages are recruited to the tumor site, develop an M2 phenotype and 

induce down regulation of CD8
+
 CTL functions. Galectin-3 has been shown to induce T cell 

tolerance resulting in T cell anergy, through various mechanisms including inhibiting CD8 and 

TCR clustering (39), destabilizing the immune synapse and promoting internalization of TCR 

and CD3ζ chains (40). It can also restrict membrane movement and TCR-associated signaling 

functions of CD45 (41) and inhibit LFA-1 recruitment thus disrupting proper secretory synapse 

formation and secretion of IFN-γ (27).  

Galectin-3 may also suppress CTL effector function by binding to LAG-3, a negative regulatory 

checkpoint, on CD8
+
 T cells (26) and by inducing apoptosis of CTLs (25) and impairs the anti-

tumor functions of natural killer (NK) cells (42). CTLs activated in vitro show an alteration in 

the N-glycome with longer and more branched N-glycans resulting in the expression of surface 

glycoproteins that exhibit high galectin-3 binding (43). The high concentration of galectin-3 

found in tumor microenvironments could potentially explain the loss of CTL functions through 

reduced motility and signaling functions of surface molecules. 

Galectin-3
-/-

 mice have also been shown to have an increase in lymph node plasmacytoid DCs 

(pDCs) compared to WT mice which are superior in activating CD8+ CTLs compared to 

conventional DC (26). In addition, galectin-3 knockdown in monocyte derived DCs increases the 

proliferation and IFN-γ production from antigen-stimulated CD4+ T cells (44).  Our profiling of 
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bone marrow from WT and gal-3 KO mice showed an increase in CD45+/MHC-II+/CD11b- 

DCs in bone marrow of gal-3 KO mice compared to WT.  Although our study did not distinguish 

DC subsets, together the data suggests that galectin-3 may indirectly regulate CD8 function by 

promoting pDC or other DC subset functions.  This requires further study. 

We show that treatment with GB1107 alone from the outset inhibits LLC1 growth and delayed 

treatment inhibits LLC1 growth in human galectin-3 expressing mice.  This reflects the increased 

affinity this inhibitor has on human versus mouse galectin-3.  In addition, the galectin-3 inhibitor 

significantly potentiates the effect of immune checkpoint blockade with an anti-PD-L1 blocking 

antibody. It is believed that the limited patient responses to checkpoint inhibition is attributable 

to the lack of T-cell infiltration in so-called ‘cold’ tumors (2). Gordon-Alonso et al., show that 

galectin-3 binds to the extracellular matrix and to glycosylated IFN-, preventing release of IFN-

-induced CXCL9 which acts as a T cell chemo-attractant (35). Consistent with this, GB1107 

both alone or in combination with anti-PD-L1 increases the number of tumor infiltrating CD8 

CTLs. Therefore galectin-3 inhibition might provide the critical means to turn a ‘cold’ tumor 

‘hot’, and thus responsive to immune checkpoint intervention. Furthermore CD8
+
 CTLs within 

the combination drug-treated tumors are more activated (express more surface PD-1), and the 

cytokine environment favors tumor rejection with increased expression of cytotoxic (IFN-, 

perforin-1 and granzyme B) and apoptotic (fas ligand) genes with increased caspase activation.   

Reduced galectin-3 expression within tumor cells has been shown to reduce tumor growth in 

many cancers (reviewed in (45)), suggested to be due to the anti-apoptotic effect of cytoplasmic 

galectin-3 binding to K-RAS and engaging anti-apoptotic pathways via its NWGR motif (20).  

However, we show that knockdown of galectin-3 in tumor cells with shRNA had only a partial 

effect on tumor growth in vitro but had no significant effect on LLC1 growth in vivo. We also 
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show that treatment with the galectin-3 inhibitor alone could inhibit human adenocarcinoma 

growth in CD-1 nude mice, which lack a T cell response but which display innate immunity.  

This suggests that either tumor derived or macrophage derived galectin-3 can impact on tumor 

growth in this model, independent of the T-cell mediated effects.   

In conclusion, our results demonstrate that galectin-3 inhibition leads to a reduction in M2-like 

TAMs and increased infiltration and activity of CD8
+
 CTLs within LLC1 tumors resulting in 

reduced tumor growth and metastasis.  Several studies have used other approaches to inhibit 

galectin-3 in cancer including peptide inhibitors (46), lactulose amines (47),  a glycopeptide 

isolated from cod (48) and large complex plant-derived polysaccharides including modified citrus 

pectin (49), GCS-100 (39) and galactomannans such as GM-CT-01 (50).  GCS-100 is currently 

being developed for chronic lymphoid leukemia and multiple myeloma (51).  However recent 

evidence suggests that these complex carbohydrates do not act as inhibitors of the canonical 

carbohydrate-binding site of galectin-3 and their physiological effects may be due to unrelated 

actions (52).  We show using a specific and high affinity inhibitor of the galectin-3 carbohydrate 

site that pharmacological inhibition of galectin-3 inhibits lung adenocarcinoma growth and 

potentiates the effect of immune checkpoint inhibitors.  Therefore galectin-3 has a strong 

regulatory effect on cancer related inflammation and could present a key target in the 

management of lung, and potentially other galectin-3 driven carcinomas, in combination with 

immune checkpoint blockade.   
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Orthotopic Tumors 

Genotype No. of mice with primary tumors No. of mice with LN metastases 

WT 4/10 (40%) 7/10 (70%) 

Gal-3
-/-

 0/11 (0%) 1/11 (9%) 

Subcutaneous Tumors 

Genotype No. of mice with primary tumors No. of mice with LN metastases 

WT 36/40 (90%) 5/12 (41.7%) 

Gal-3
-/-

  11/40 (27.5%) 0/12 (0%) 

 

Table 1. Galectin-3
-/-

 mice do not support tumor growth 

Prevalence of mice with established primary tumors and inguinal lymph node metastases are 

summarized. Orthotopic and subcutaneous tumor data is representative of one or two 

independent experiments respectively. 
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Figure legends 

Figure 1. Galectin-3
-/-

 mice do not support tumor growth 

 

LLC1 cells were injected into the lung parenchyma of age and sex-matched C57Bl/6 wild type 

and galectin-3
-/-

 mice. Tumor nodules were enumerated by macroscopic counting and draining 

lymph nodes were checked for metastases by luciferase assay. Representative H&E-stained lung 

sections (A) from WT and galectin-3
-/-

 mice are shown. (B-D) LLC1 cells were inoculated 

subcutaneously into both flanks of WT or galectin-3
-/-

 mice. Representative images (B), tumor 

volume (C) and tumor weight on day 19 post-dissection (D) are shown. Arrows indicate tumor 

sites. Data in (A) is derived from a single experiment, n=10-11.  Data from (B-D) are 

representative of two independent experiments, n=8; Differences were compared using an 

unpaired two-tailed t test; ***P<0.001, ****P<0.0001 (compared to WT on the same day). 

 

Figure 2 

 

Bone-marrow derived macrophages support LLC1 tumor growth.  

(A) Subcutaneous tumors from WT or galectin-3
-/-

 mice were stained for F4/80 or Ym-1. (B) 

Quantitation of Ym1 and F480 staining in tumor sections. (C) RNA was extracted from these 

tumors and gene expression of various cytokines was assessed by qPCR. (D) LLC1 cells were 

injected subcutaneously in both flanks of CD11b DTR mice (n=12) and their wild type siblings 

(n=11). All mice were administered DT (10 ng/g) prior to cell injection. (D) Tumor volume and 

(E) tumor weights following DT administration. (F) WT and galectin-3
-/-

 mice were treated with 

clodronate, irradiated and subsequently transplanted with bone marrow cells from WT or 

galectin-3
-/-

 mice. LLC1 cells were injected subcutaneously into both flanks of transplanted mice 
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and tumor volumes (F) and weights (G) were measured. (H) Double IF staining for F4/80 (green) 

and galectin-3 (red) was performed in tumors from galectin-3
-/-

 mice receiving either WT or 

galectin-3
-/-

 bone marrow transplants. Dotted line represents the boundary between tumor cells 

(T) and stroma (S).  Data is representative of 8 mice per irradiation/transplant control group and 

12 mice per experimental group.  Two-tailed t-tests were used to assess statistical differences; 

*P<0.05, ***P<0.001.  

 

Figure 3 

 

Galectin-3 inhibitor GB1107 inhibits lung adenocarcinoma growth and metastasis in vivo. 

(A) Female CD-1 nude mice received two subcutaneous injections of 3x10
6
 A549 cells in a 1:1 

ratio of matrigel and serum-free media. Tumors grew to an average of 166mm3 before 

commencement of single daily dosing of vehicle (n=6) or 10mg/kg GB1107 (n=6) from day 18. 

(A) Tumor volumes and weights, along with representative images are shown. (B) C57Bl/6 mice 

were injected subcutaneously with LLC1 cells and orally dosed once daily with vehicle or 

10mg/kg GB1107 from day 1. Tumor volumes and weights are shown. (C) To test the effect of 

GB1107 on metastasis, mice were injected with 1x10
6
 LLC1 cells via the tail vein, followed by 

daily oral gavage of vehicle (n=10) or GB1107 (10mg/kg; n=10) from day 1. On day 7, tumor 

burden in whole lungs was determined by qPCR using luciferase-specific primers. (D) RNA was 

extracted from tumors from (B) and expression of various genes was evaluated by qPCR. (E) 

Hu-Gal-3-KI mice bearing bilateral subcutaneous LLC1 tumors received vehicle or 10 mg/kg 

GB1107 once daily orally from day 5. Tumor volumes and weights on day 14 are shown. Results 

from (E) represent the mean +/- SEM of 2 independent experiments of n=6. (F) Western blot 
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confirming expression of human galectin-3 in liver lysates from hu-Gal-3-KI mice. Two-tailed t-

tests were used to determine statistical significance; *P<0.05, **P<0.01, ***P<0.001 (compared 

to vehicle controls).  

 

Figure 4. Galectin-3 depletion reduces intra-tumor M2-like macrophages and CD8 T cell 

activation. 

LLC tumors from human Hu-Gal-3-KI mice from Figure 3E treated with vehicle or GB1107 

(n=6) were digested and processed by flow cytometry.  (A) Relative prevalence of total 

macrophages and CD206 expression in macrophages and CD3+, CD4+ and CD8+ T cells in 

tumor digests. (B) Flow cytometry analysis of subcutaneous tumors from WT or galectin-3
-/-

 

mice (n=4). 

 

Figure 5 

 

Combination therapy with galectin-3 inhibitor GB1107 and PD-L1 blocking antibody 

promote tumor cell apoptosis and cytotoxic CD8 T cell activation.  

On day 6 mice bearing subcutaneous LLC1 tumors were randomized into 4 groups and received 

either no treatment (n=8), α-PD-L1 neutralizing antibody (200μg twice weekly I.P, n=8) or 

GB1107 (10mg/kg once daily orally, n=8) or α-PD-L1 plus GB1107 (n=8). Tumor volumes (A) 

and weights on day 16 (B) are shown. (C) Tumor infiltrating immune populations were analyzed 

by flow cytometry (n=4). (D) Total RNA was extracted from tumors in each group and qPCR 

was used to assess relative gene expression. (E-F) Immunohistochemical staining of cleaved 

caspase-3 was quantified as described in materials and methods. Scale bars are 100μm. Data 
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represents mean ± SE from a single (A-B, D-F) or 2 (C) independent experiments. Two-way 

ANOVA with Tukey’s Post Hoc test was used to test for differences in tumor volume and 

cleaved caspase-3 IHC scores. One-way ANOVA and Fisher’s LSD test were used to compare 

tumor weights, and qPCR and flow cytometry data was compared using two-tailed t-tests; 

*P<0.05, **P<0.01, ***P<0.001.  
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