248 research outputs found

    Multi-color Optical and NIR Light Curves of 64 Stripped-Envelope Core-Collapse Supernovae

    Full text link
    We present a densely-sampled, homogeneous set of light curves of 64 low redshift (z < 0.05) stripped-envelope supernovae (SN of type IIb, Ib, Ic and Ic-bl). These data were obtained between 2001 and 2009 at the Fred L. Whipple Observatory (FLWO) on Mt. Hopkins in Arizona, with the optical FLWO 1.2-m and the near-infrared PAIRITEL 1.3-m telescopes. Our dataset consists of 4543 optical photometric measurements on 61 SN, including a combination of UBVRI, UBVr'i', and u'BVr'i', and 2142 JHKs near-infrared measurements on 25 SN. This sample constitutes the most extensive multi-color data set of stripped-envelope SN to date. Our photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination. This work presents these photometric data, compares them with data in the literature, and estimates basic statistical quantities: date of maximum, color, and photometric properties. We identify promising color trends that may permit the identification of stripped-envelope SN subtypes from their photometry alone. Many of these SN were observed spectroscopically by the CfA SN group, and the spectra are presented in a companion paper (Modjaz et al. 2014). A thorough exploration that combines the CfA photometry and spectroscopy of stripped-envelope core-collapse SN will be presented in a follow-up paper.Comment: 26 pages, 17 figures, 8 tables. Revised version resubmitted to ApJ Supplements after referee report. Additional online material is available through http://cosmo.nyu.edu/SNYU

    Type IIb Supernova SN 2011dh: Spectra and Photometry from the Ultraviolet to the Near-Infrared

    Get PDF
    We report spectroscopic and photometric observations of the Type IIb SN 2011dh obtained between 4 and 34 days after the estimated date of explosion (May 31.5 UT). The data cover a wide wavelength range from 2,000 Angstroms in the UV to 2.4 microns in the NIR. Optical spectra provide line profiles and velocity measurements of HI, HeI, CaII and FeII that trace the composition and kinematics of the SN. NIR spectra show that helium is present in the atmosphere as early as 11 days after the explosion. A UV spectrum obtained with the STIS reveals that the UV flux for SN 2011dh is low compared to other SN IIb. The HI and HeI velocities in SN 2011dh are separated by about 4,000 km/s at all phases. We estimate that the H-shell of SN 2011dh is about 8 times less massive than the shell of SN 1993J and about 3 times more massive than the shell of SN 2008ax. Light curves (LC) for twelve passbands are presented. The maximum bolometric luminosity of 1.8±0.2×10421.8 \pm 0.2 \times 10^{42} erg s1^{-1} occurred about 22 days after the explosion. NIR emission provides more than 30% of the total bolometric flux at the beginning of our observations and increases to nearly 50% of the total by day 34. The UV produces 16% of the total flux on day 4, 5% on day 9 and 1% on day 34. We compare the bolometric light curves of SN 2011dh, SN 2008ax and SN 1993J. The LC are very different for the first twelve days after the explosions but all three SN IIb display similar peak luminosities, times of peak, decline rates and colors after maximum. This suggests that the progenitors of these SN IIb may have had similar compositions and masses but they exploded inside hydrogen shells that that have a wide range of masses. The detailed observations presented here will help evaluate theoretical models for this supernova and lead to a better understanding of SN IIb.Comment: 23 pages, 14 figures, 9 tables, accepted by Ap

    Where Did They Come From, Where Did They Go: Grazing Fireballs

    Get PDF
    For centuries extremely long grazing fireball displays have fascinated observers and inspired people to ponder about their origins. The Desert Fireball Network is the largest single fireball network in the world, covering about one third of Australian skies. This expansive size has enabled us to capture a majority of the atmospheric trajectory of a spectacular grazing event that lasted over 90 s, penetrated as deep as ∼58.5 km, and traveled over 1300 km through the atmosphere before exiting back into interplanetary space. Based on our triangulation and dynamic analyses of the event, we have estimated the initial mass to be at least 60 kg, which would correspond to a 30 cm object given a chondritic density (3500 kg m-3). However, this initial mass estimate is likely a lower bound, considering the minimal deceleration observed in the luminous phase. The most intriguing quality of this close encounter is that the meteoroid originated from an Apollo-type orbit and was inserted into a Jupiter-family comet (JFC) orbit due to the net energy gained during the close encounter with Earth. Based on numerical simulations, the meteoroid will likely spend ∼200 kyr on a JFC orbit and have numerous encounters with Jupiter, the first of which will occur in 2025 January-March. Eventually the meteoroid will likely be ejected from the solar system or be flung into a trans-Neptunian orbit

    The continuing story of SN IIb 2013df: new optical and IR observations and analysis

    Get PDF
    This work has been supported by the Hungarian Scientific Research Fund (OTKA) Grants NN107637, K104607, K83790, and K113117. TS is supported by the OTKA Postdoctoral Fellowship PD112325. JCW’s Supernova group at the UT Austin is supported by NSF Grant AST 11-09881 grant. JMS is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1302771. KS and AP are supported by the ‘Lend¨ulet-2009’ Young Researchers Program and the LP2012-31 grant of the Hungarian Academy of Sciences, respectively; KS is also supported by the ESA PECS Contract no. 4000110889/14/NL/NDe.SN 2013df is a nearby Type IIb supernova that seems to be the spectroscopic twin of the well-known SN 1993J. Previous studies revealed many, but not all interesting properties of this event. Our goal was to add new understanding of both the early- and late-time phases of SN 2013df. Our spectral analysis is based on six optical spectra obtained with the 9.2 m Hobby-Eberly Telescope during the first month after explosion, complemented by a near-infrared spectrum. We applied the SYNAPPS spectral synthesis code to constrain the chemical composition and physical properties of the ejecta. A principal result is the identification of 'high-velocity' He i lines in the early spectra of SN 2013df, manifest as the blue component of the double-troughed profile at ~5650 Å. This finding, together with the lack of clear separation of H and He lines in velocity space, indicates that both H and He features form at the outer envelope during the early phases. We also obtained ground-based BVRI and g'r'i'z' photometric data up to +45 d and unfiltered measurements with the ROTSE-IIIb telescope up to +168 d. From the modelling of the early-time quasi-bolometric light curve, we find Mej ~ 3.2-4.6 M⊙ and Ekin ~ 2.6-2.8 × 1051 erg for the initial ejecta mass and the initial kinetic energy, respectively, which agree well with the values derived from the separate modelling of the light-curve tail. Late-time mid-infrared excess indicates circumstellar interaction starting ~1 yr after explosion, in accordance with previously published optical, X-ray, and radio data.Publisher PDFPeer reviewe
    corecore