21 research outputs found

    United States Acculturation and Cancer Patients' End-of-Life Care

    Get PDF
    Background: Culture shapes how people understand illness and death, but few studies examine whether acculturation influences patients' end-of-life treatment preferences and medical care. Methods and Findings: In this multi-site, prospective, longitudinal cohort study of terminally-ill cancer patients and their caregivers (n = 171 dyads), trained interviewers administered the United States Acculturation Scale (USAS). The USAS is a 19-item scale developed to assess the degree of "Americanization" in first generation or non-US born caregivers of terminally-ill cancer patients. We evaluated the internal consistency, concurrent, criterion, and content validity of the USAS. We also examined whether caregivers' USAS scores predicted patients' communication, treatment preferences, and end-of-life medical care in multivariable models that corrected for significant confounding influences (e.g. education, country of origin, English proficiency). The USAS measure was internally consistent (Cronbach α = 0.98); and significantly associated with US birthplace (r = 0.66, P<0.0001). USAS scores were predictive of patients' preferences for prognostic information (AOR = 1.31, 95% CI:1.00-1.72), but not comfort asking physicians' questions about care (AOR 1.23, 95% CI:0.87-1.73). They predicted patients' preferences for feeding tubes (AOR = 0.68, 95% CI:0.49-0.99) and wish to avoid dying in an intensive care unit (AOR = 1.36, 95% CI:1.05-1.76). Scores indicating greater acculturation were also associated with increased odds of patient participation in clinical trials (AOR = 2.20, 95% CI:1.28-3.78), compared with lower USAS scores, and greater odds of patients receiving chemotherapy (AOR = 1.59, 95% CI:1.20-2.12). Conclusion: The USAS is a reliable and valid measure of "Americanization" associated with advanced cancer patients' end-of-life preferences and care. USAS scores indicating greater caregiver acculturation were associated with increased odds of patient participation in cancer treatment (chemotherapy, clinical trials) compared with lower scores. Future studies should examine the effects of acculturation on end-of-life care to identify patient and provider factors that explain these effects and targets for future interventions to improve care (e.g., by designing more culturally-competent health education materials). © 2013 Wright et al

    Effectiveness of school food environment policies on children's dietary behaviors: A systematic review and meta-analysis.

    Get PDF
    BACKGROUND: School food environment policies may be a critical tool to promote healthy diets in children, yet their effectiveness remains unclear. OBJECTIVE: To systematically review and quantify the impact of school food environment policies on dietary habits, adiposity, and metabolic risk in children. METHODS: We systematically searched online databases for randomized or quasi-experimental interventions assessing effects of school food environment policies on children's dietary habits, adiposity, or metabolic risk factors. Data were extracted independently and in duplicate, and pooled using inverse-variance random-effects meta-analysis. Habitual (within+outside school) dietary intakes were the primary outcome. Heterogeneity was explored using meta-regression and subgroup analysis. Funnel plots, Begg's and Egger's test evaluated potential publication bias. RESULTS: From 6,636 abstracts, 91 interventions (55 in US/Canada, 36 in Europe/New Zealand) were included, on direct provision of healthful foods/beverages (N = 39 studies), competitive food/beverage standards (N = 29), and school meal standards (N = 39) (some interventions assessed multiple policies). Direct provision policies, which largely targeted fruits and vegetables, increased consumption of fruits by 0.27 servings/d (n = 15 estimates (95%CI: 0.17, 0.36)) and combined fruits and vegetables by 0.28 servings/d (n = 16 (0.17, 0.40)); with a slight impact on vegetables (n = 11; 0.04 (0.01, 0.08)), and no effects on total calories (n = 6; -56 kcal/d (-174, 62)). In interventions targeting water, habitual intake was unchanged (n = 3; 0.33 glasses/d (-0.27, 0.93)). Competitive food/beverage standards reduced sugar-sweetened beverage intake by 0.18 servings/d (n = 3 (-0.31, -0.05)); and unhealthy snacks by 0.17 servings/d (n = 2 (-0.22, -0.13)), without effects on total calories (n = 5; -79 kcal/d (-179, 21)). School meal standards (mainly lunch) increased fruit intake (n = 2; 0.76 servings/d (0.37, 1.16)) and reduced total fat (-1.49%energy; n = 6 (-2.42, -0.57)), saturated fat (n = 4; -0.93%energy (-1.15, -0.70)) and sodium (n = 4; -170 mg/d (-242, -98)); but not total calories (n = 8; -38 kcal/d (-137, 62)). In 17 studies evaluating adiposity, significant decreases were generally not identified; few studies assessed metabolic factors (blood lipids/glucose/pressure), with mixed findings. Significant sources of heterogeneity or publication bias were not identified. CONCLUSIONS: Specific school food environment policies can improve targeted dietary behaviors; effects on adiposity and metabolic risk require further investigation. These findings inform ongoing policy discussions and debates on best practices to improve childhood dietary habits and health

    The epidemiology of fighting in group-housed laboratory mice

    Get PDF
    Injurious home-cage aggression (fighting) in mice affects both animal welfare and scientific validity. It is arguably the most common potentially preventable morbidity in mouse facilities. Existing literature on mouse aggression almost exclusively examines territorial aggression induced by introducing a stimulus mouse into the home-cage of a singly housed mouse (i.e. the resident/intruder test). However, fighting occurring in mice living together in long-term groups under standard laboratory housing conditions has barely been studied. We performed a point-prevalence epidemiological survey of fighting at a research institution with an approximate 60,000 cage census. A subset of cages was sampled over the course of a year and factors potentially influencing home-cage fighting were recorded. Fighting was almost exclusively seen in group-housed male mice. Approximately 14% of group-housed male cages were observed with fighting animals in brief behavioral observations, but only 14% of those cages with fighting had skin injuries observable from cage-side. Thus simple cage-side checks may be missing the majority of fighting mice. Housing system (the combination of cage ventilation and bedding type), genetic background, time of year, cage location on the rack, and rack orientation in the room were significant risk factors predicting fighting. Of these predictors, only bedding type is easily manipulated to mitigate fighting. Cage ventilation and rack orientation often cannot be changed in modern vivaria, as they are baked in by cookie-cutter architectural approaches to facility design. This study emphasizes the need to invest in assessing the welfare costs of new housing and husbandry systems before implementing them
    corecore