6 research outputs found
Recommended from our members
Cenozoic climate change and the evolution of North American mammalian predator ecomorphology
Abstract:
The trend of global cooling across the Cenozoic transformed the North American landscape from closed forest to more open grasslands, resulting in dietary adaptations in herbivores in response to shifting resources. In contrast, the material properties of the predator food source (muscle, skin, and bone) have remained constant over this transition, suggesting a corresponding lack of change in predator dietary adaptations. We investigated the North American mammalian predator fossil record using a tooth-shape metric and body mass, predicting that the former would exhibit stability. Instead, we found that mean molar morphology became more blade-like, with our tooth-shape metric sharply increasing in the late Eocene and remaining high from the Oligocene onward. Subsequent tests in extant carnivorans reveal taxa with more bladelike teeth are prevalent in more open environments. Our results reveal an unexpected functional shift among North American predators in response to large-scale environmental changes across the Cenozoic
Non-model systems in mammalian forelimb evo-devo
Mammal forelimbs are highly diverse, ranging from the elongated wing of a bat to the stout limb of the mole. The mammal forelimb has been a long-standing system for the study of early developmental patterning, proportional variation, shape change, and the reduction of elements. However, most of this work has been performed in mice, which neglects the wide variation present across mammal forelimbs. This review emphasizes the critical role of non-model systems in limb evo-devo and highlights new emerging models and their potential. We discuss the role of gene networks in limb evolution, and touch on functional analyses that lay the groundwork for further developmental studies. Mammal limb evo-devo is a rich field, and here we aim to synthesize the findings of key recent works and the questions to which they lead
Recommended from our members
Making a bat: The developmental basis of bat evolution.
Bats are incredibly diverse, both morphologically and taxonomically. Bats are the only mammalian group to have achieved powered flight, an adaptation that is hypothesized to have allowed them to colonize various and diverse ecological niches. However, the lack of fossils capturing the transition from terrestrial mammal to volant chiropteran has obscured much of our understanding of bat evolution. Over the last 20 years, the emergence of evo-devo in non-model species has started to fill this gap by uncovering some developmental mechanisms at the origin of bat diversification. In this review, we highlight key aspects of studies that have used bats as a model for morphological adaptations, diversification during adaptive radiations, and morphological novelty. To do so, we review current and ongoing studies on bat evolution. We first investigate morphological specialization by reviewing current knowledge about wing and face evolution. Then, we explore the mechanisms behind adaptive diversification in various ecological contexts using vision and dentition. Finally, we highlight the emerging work into morphological novelties using bat wing membranes
Recommended from our members
Making a bat: The developmental basis of bat evolution.
Bats are incredibly diverse, both morphologically and taxonomically. Bats are the only mammalian group to have achieved powered flight, an adaptation that is hypothesized to have allowed them to colonize various and diverse ecological niches. However, the lack of fossils capturing the transition from terrestrial mammal to volant chiropteran has obscured much of our understanding of bat evolution. Over the last 20 years, the emergence of evo-devo in non-model species has started to fill this gap by uncovering some developmental mechanisms at the origin of bat diversification. In this review, we highlight key aspects of studies that have used bats as a model for morphological adaptations, diversification during adaptive radiations, and morphological novelty. To do so, we review current and ongoing studies on bat evolution. We first investigate morphological specialization by reviewing current knowledge about wing and face evolution. Then, we explore the mechanisms behind adaptive diversification in various ecological contexts using vision and dentition. Finally, we highlight the emerging work into morphological novelties using bat wing membranes
Emergent Coordination of the CHKB and CPT1B Genes in Eutherian Mammals: Implications for the Origin of Brown Adipose Tissue
Mitochondrial fatty acid oxidation (FAO) contributes to the proton motive force that drives ATP synthesis in many mammalian tissues. In eutherian (placental) mammals, brown adipose tissue (BAT) can also dissipate this proton gradient through uncoupling protein 1 (UCP1) to generate heat, but the evolutionary events underlying the emergence of BAT are unknown. An essential step in FAO is the transport of cytoplasmic long chain acyl-coenzyme A (acyl-CoA) into the mitochondrial matrix, which requires the action of carnitine palmitoyltransferase 1B (CPT1B) in striated muscle and BAT. In eutherians, the CPT1B gene is closely linked to the choline kinase beta (CHKB) gene, which is transcribed from the same DNA strand and terminates just upstream of CPT1B. CHKB is a rate-limiting enzyme in the synthesis of phosphatidylcholine (PC), a predominant mitochondrial membrane phospholipid, suggesting that the coordinated expression of CHKB and CPT1B may cooperatively enhance mitochondrial FAO. The present findings show that transcription of the eutherian CHKB and CPT1B genes is linked within a unitary epigenetic domain targeted to the CHKB gene, and that that this regulatory linkage appears to have resulted from an intergenic deletion in eutherians that significantly altered the distribution of CHKB and CPT1B expression. Informed by the timing of this event relative to the emergence of BAT, the phylogeny of CHKB-CPT1B synteny, and the insufficiency of UCP1 to account for eutherian BAT, these data support a mechanism for the emergence of BAT based on the acquisition of a novel capacity for adipocyte FAO in a background of extant UCP1