2,711 research outputs found
The Ursinus Weekly, April 28, 1905
Spring • Chemical-Biological outing • Alumni notes • Baseball • Schaff prize debate • College world • College notes • Seminary commencementhttps://digitalcommons.ursinus.edu/weekly/3013/thumbnail.jp
Targeted, structured text messaging to improve dietary and lifestyle behaviours for people on maintenance haemodialysis (KIDNEYTEXT): Study protocol for a randomised controlled trial
Introduction Managing nutrition is critical for reducing morbidity and mortality in patients on haemodialysis but adherence to the complex dietary restrictions remains problematic. Innovative interventions to enhance the delivery of nutritional care are needed. The aim of this phase II trial is to evaluate the feasibility and effectiveness of a targeted mobile phone text messaging system to improve dietary and lifestyle behaviours in patients on long-term haemodialysis. Methods and analysis Single-blinded randomised controlled trial with 6 months of follow-up in 130 patients on haemodialysis who will be randomised to either standard care or KIDNEYTEXT. The KIDNEYTEXT intervention group will receive three text messages per week for 6 months. The text messages provide customised dietary information and advice based on renal dietary guidelines and general healthy eating dietary guidelines, and motivation and support to improve behaviours. The primary outcome is feasibility including recruitment rate, drop-out rate, adherence to renal dietary recommendations, participant satisfaction and a process evaluation using semistructured interviews with a subset of purposively sampled participants. Secondary and exploratory outcomes include a range of clinical and behavioural outcomes and a healthcare utilisation cost analysis will be undertaken. Ethics and dissemination The study has been approved by the Western Sydney Local Health District Human Research Ethics Committee-Westmead. Results will be presented at scientific meetings and published in peer-reviewed publications. Trial registration number ACTRN12617001084370; Pre-results
A Class of Eccentric Binaries with Dynamic Tidal Distortions Discovered with Kepler
We have discovered a class of eccentric binary systems within the Kepler data
archive that have dynamic tidal distortions and tidally-induced pulsations.
Each has a uniquely shaped light curve that is characterized by periodic
brightening or variability at time scales of 4-20 days, frequently accompanied
by shorter period oscillations. We can explain the dominant features of the
entire class with orbitally-varying tidal forces that occur in close, eccentric
binary systems. The large variety of light curve shapes arises from viewing
systems at different angles. This hypothesis is supported by spectroscopic
radial velocity measurements for five systems, each showing evidence of being
in an eccentric binary system. Prior to the discovery of these 17 new systems,
only four stars, where KOI-54 is the best example, were known to have evidence
of these dynamic tides and tidally-induced oscillations. We perform preliminary
fits to the light curves and radial velocity data, present the overall
properties of this class and discuss the work required to accurately model
these systems.Comment: 13 pages, submitted to Ap
Developing a Baseline for Customer Satisfaction in the Kentucky Transportation Cabinet\u27s Department of Vehicle Regulation
Among the Kentucky Transportation Cabinet’s (KYTC) business units, the Department of Vehicle Regulation (DVR) has the most interactions with members of the public and other government agencies. Given its high profile and public visibility, it is critical for the department to provide high-quality customer service. Lacking data on customer perceptions of DVR’s level of service, the department commissioned researchers at the Kentucky Transportation Center (KTC) to conduct a baseline and rebaseline customer satisfaction surveys. Along with administering surveys to external customers, KTC’s research team also polled DVR staff to gauge employee morale and identify areas which could be improved. Approximately 90% of departmental staff believe that DVR provides a high level of customer service, and most viewed the department’s divisions favorably. Staff, however, noted the importance of fostering an open, equitable, and collaborative workspace as well as the importance of having up-to-date technological tools to perform daily job functions. With respect to the baseline and rebaseline external customer surveys, this study measured a slight decline in overall customer satisfaction. In the baseline survey, 81% of respondents were very or somewhat satisfied with the service they received; in the rebaseline survey 77% said the same. Regression modeling found a strong negative relationship between number of call escalations (i.e., call transfers) and customer satisfaction; call duration had a smaller but negative impact on customer satisfaction. Survey respondents expressed a growing preference for using electronic means (email, website) to interact with DVR. Moving forward, it will be critical for DVR to dedicate resources to improving its website and streamlining other modes of electronic communication, reducing the number of call escalations, and shortening average call durations – particularly hold times
The K2 Mission: Characterization and Early results
The K2 mission will make use of the Kepler spacecraft and its assets to
expand upon Kepler's groundbreaking discoveries in the fields of exoplanets and
astrophysics through new and exciting observations. K2 will use an innovative
way of operating the spacecraft to observe target fields along the ecliptic for
the next 2-3 years. Early science commissioning observations have shown an
estimated photometric precision near 400 ppm in a single 30 minute observation,
and a 6-hour photometric precision of 80 ppm (both at V=12). The K2 mission
offers long-term, simultaneous optical observation of thousands of objects at a
precision far better than is achievable from ground-based telescopes. Ecliptic
fields will be observed for approximately 75-days enabling a unique exoplanet
survey which fills the gaps in duration and sensitivity between the Kepler and
TESS missions, and offers pre-launch exoplanet target identification for JWST
transit spectroscopy. Astrophysics observations with K2 will include studies of
young open clusters, bright stars, galaxies, supernovae, and asteroseismology.Comment: 25 pages, 11 figures, Accepted to PAS
Selective inhibition of cancer cell self-renewal through a Quisinostat-histone H1.0 axis
Continuous cancer growth is driven by subsets of self-renewing malignant cells. Targeting of uncontrolled self-renewal through inhibition of stem cell-related signaling pathways has proven challenging. Here, we show that cancer cells can be selectively deprived of self-renewal ability by interfering with their epigenetic state. Re-expression of histone H1.0, a tumor-suppressive factor that inhibits cancer cell self-renewal in many cancer types, can be broadly induced by the clinically well-tolerated compound Quisinostat. Through H1.0, Quisinostat inhibits cancer cell self-renewal and halts tumor maintenance without affecting normal stem cell function. Quisinostat also hinders expansion of cells surviving targeted therapy, independently of the cancer types and the resistance mechanism, and inhibits disease relapse in mouse models of lung cancer. Our results identify H1.0 as a major mediator of Quisinostat's antitumor effect and suggest that sequential administration of targeted therapy and Quisinostat may be a broadly applicable strategy to induce a prolonged response in patients
KOI-54: The Kepler Discovery of Tidally Excited Pulsations and Brightenings in a Highly Eccentric Binary
Kepler observations of the star HD 187091 (KIC 8112039, hereafter KOI-54) revealed a remarkable light curve exhibiting sharp periodic brightening events every 41.8 days with a superimposed set of oscillations forming a beating pattern in phase with the brightenings. Spectroscopic observations revealed that this is a binary star with a highly eccentric orbit, e = 0.83. We are able to match the Kepler light curve and radial velocities with a nearly face-on (i = 5 degrees.5) binary star model in which the brightening events are caused by tidal distortion and irradiation of nearly identical A stars during their close periastron passage. The two dominant oscillations in the light curve, responsible for the beating pattern, have frequencies that are the 91st and 90th harmonic of the orbital frequency. The power spectrum of the light curve, after removing the binary star brightening component, reveals a large number of pulsations, 30 of which have a signal-to-noise ratio greater than or similar to 7. Nearly all of these pulsations have frequencies that are either integer multiples of the orbital frequency or are tidally split multiples of the orbital frequency. This pattern of frequencies unambiguously establishes the pulsations as resonances between the dynamic tides at periastron and the free oscillation modes of one or both of the stars. KOI-54 is only the fourth star to show such a phenomenon and is by far the richest in terms of excited modes.NASA, Science Mission DirectorateNASA NNX08AR14GEuropean Research Council under the European Community 227224W.M. Keck FoundationMcDonald Observator
The Three Dimensional Structure of EUV Accretion Regions in AM Herculis Stars: Modeling of EUV Photometric and Spectroscopic Observations
We have developed a model of the high-energy accretion region for magnetic
cataclysmic variables and applied it to {\it Extreme Ultraviolet Explorer}
observations of 10 AM Herculis type systems. The major features of the EUV
light curves are well described by the model. The light curves exhibit a large
variety of features such as eclipses of the accretion region by the secondary
star and the accretion stream, and dips caused by material very close to the
accretion region. While all the observed features of the light curves are
highly dependent on viewing geometry, none of the light curves are consistent
with a flat, circular accretion spot whose lightcurve would vary solely from
projection effects. The accretion region immediately above the WD surface is a
source of EUV radiation caused by either a vertical extent to the accretion
spot, or Compton scattering off electrons in the accretion column, or, very
likely, both. Our model yields spot sizes averaging 0.06 R, or the WD surface area, and average spot heights of 0.023
R. Spectra extracted during broad dip phases are softer than spectra
during the out-of-dip phases. This spectral ratio measurement leads to the
conclusion that Compton scattering, some absorption by a warm absorber,
geometric effects, an asymmetric temperature structure in the accretion region
and an asymmetric density structure of the accretion columnare all important
components needed to fully explain the data. Spectra extracted at phases where
the accretion spot is hidden behind the limb of the WD, but with the accretion
column immediately above the spot still visible, show no evidence of emission
features characteristic of a hot plasma.Comment: 30 Pages, 11 Figure
- …