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RESEARCH ARTICLE Open Access

Testing for causality between systematically
identified risk factors and glioma: a
Mendelian randomization study
A. E. Howell1†, J. W. Robinson1†, R. E. Wootton2,3,4, A. McAleenan5, S. Tsavachidis6, Q. T. Ostrom6, M. Bondy6,
G. Armstrong6, C. Relton2, P. Haycock2, R. M. Martin2,7, J. Zheng2*† and K. M. Kurian1*†

Abstract

Background: Whilst epidemiological studies have provided evidence of associations between certain risk factors
and glioma onset, inferring causality has proven challenging. Using Mendelian randomization (MR), we assessed
whether associations of 36 reported glioma risk factors showed evidence of a causal relationship.

Methods: We performed a systematic search of MEDLINE from inception to October 2018 to identify candidate risk
factors and conducted a meta-analysis of two glioma genome-wide association studies (5739 cases and 5501 controls)
to form our exposure and outcome datasets. MR analyses were performed using genetic variants to proxy for
candidate risk factors. We investigated whether risk factors differed by subtype diagnosis (either glioblastoma (n =
3112) or non-glioblastoma (n = 2411)). MR estimates for each risk factor were determined using multiplicative random
effects inverse-variance weighting (IVW). Sensitivity analyses investigated potential pleiotropy using MR-Egger
regression, the weighted median estimator, and the mode-based estimator. To increase power, trait-specific polygenic
risk scores were used to test the association of a genetically predicated increase in each risk factor with glioma onset.

Results: Our systematic search identified 36 risk factors that could be proxied using genetic variants. Using MR, we
found evidence that four genetically predicted traits increased risk of glioma, glioblastoma or non-glioblastoma: longer
leukocyte telomere length, liability to allergic disease, increased alcohol consumption and liability to childhood
extreme obesity (> 3 standard deviations from the mean). Two traits decreased risk of non-glioblastoma cancers:
increased low-density lipoprotein cholesterol (LDLc) and triglyceride levels. Our findings were similar across sensitivity
analyses that made allowance for pleiotropy (genetic confounding).

Conclusions: Our comprehensive investigation provides evidence of a causal link between both genetically predicted
leukocyte telomere length, allergic disease, alcohol consumption, childhood extreme obesity, and LDLc and triglyceride
levels, and glioma. The findings from our study warrant further research to uncover mechanisms that implicate these
traits in glioma onset.
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Background
Glioma is a rare cancer with age adjusted incidence rates
range from 4.67 to 5.73 per 100,000 [1, 2]. Despite this,
brain tumours such as glioma cause the greatest number
of years lost to cancer to those under 40 years of age [3].
The health burden posed by glioma is due to its poor
prognosis, with an overall 5-year survival rate of under
20% and significant morbidity in survivors [4–6]. While
there have been efforts to identify risk factors for glioma,
evidence has been inconsistent [7–22] and the aetiology
of glioma remains largely unclear [4].
Mendelian randomization (MR) is a method to appraise

causality within observational epidemiology. It utilizes
germline genetic variants that are robustly associated with
potentially modifiable exposures as proxies (‘instrumental
variables’ [IVs]) for the risk factor of interest [23]. As
germline genetic variants tend to be randomly distributed
with respect to most human traits in the general popula-
tion [24], MR studies are less likely to be affected by the
sorts of confounding factors that typically bias observa-
tional findings [25, 26]. Additionally, as germline geno-
types cannot be affected by the presence of disease, the
generation of spurious results through reverse causation is
avoided [27]. Germline genetic variants can therefore be
regarded as randomised proxies for an exposure of inter-
est, in the same way that the allocation group in a rando-
mised controlled trial (RCT) is a proxy for an intervention
of interest [28]. MR studies can prioritise targets for fur-
ther research or for intervention development in an RCT,
and may provide more reliable findings than conventional
epidemiology to help inform public health policies when
an RCT is not possible [28].
MR analysis is based upon the following three assump-

tions (Additional file Figure 1) [28]: the single nucleotide
polymorphisms (SNPs) selected as IVs to proxy the expos-
ure are robustly associated with the exposure; the SNPs
have no relationship with any confounders of the expos-
ure–outcome association; and the SNPs are only associated
with the outcome through their effect on the exposure.
Within the constraints of these assumptions, SNPs can be
used as proxies for a large range of modifiable exposures.
Two-sample MR techniques allow analysis using summary
data from genome wide association studies (GWAS) con-
ducted in two independent samples: one set for the expos-
ure of interest and one for the outcome [29]. An important
application of MR is to elicit causal evidence for putative
observational associations in cancer [30].
There have been previous MR studies that have inves-

tigated potential risk factors for glioma. One such study
implicated genetically predicted increases in telomere
length were associated with an increased risk of glioma
[31, 32]. Other conventional observational studies have
shown negative results for risk factors, such as for
obesity-related factors, vitamin D and atopy [33–35].

The aim of this study was to identify risk factors that
have been investigated using traditional observational
epidemiology and to examine the causal nature of the
association between these putative risk factors and gli-
oma onset. Glioma is a highly heterogeneous disease,
with varying genetic profiles both intra- and inter-
tumourally [36]. Therefore, we conducted subtype ana-
lyses by splitting the outcome data into glioblastoma or
non-glioblastoma (low grade glioma) cases only. To in-
crease statistical power, our main analyses used the full
outcome data regardless of subtype diagnosis (consisting
of glioblastoma and non-glioblastoma cases). Putative as-
sociations were then evaluated using a two-sample MR
approach using glioma summary data from a recent
GWAS [37] meta-analysis.

Methods
We conducted a GWAS meta-analysis of glioma and a
two-sample MR analysis using summary GWAS data.
Ethical approval was not required for this specific ana-
lysis as the entirety of the data was sourced from the
summary statistics of a published GWAS and no
individual-level data were used. A summary of the ana-
lysis plan can be found in Additional file Figure 2.

Genetic instrument selection
To systematically and comprehensively identify all previ-
ously reported non-genetic or epigenetic risk factors for
glioma from the existing published literature, we con-
ducted a formal systematic search of MEDLINE from in-
ception to October 2018 using the Ovid Platform [38].
Details of the search strategy and inclusion criteria are
provided (Additional file Note). To ensure the same text
was not screened multiple times, duplicates were re-
moved using the duplicate removal function in Endnote
X7 software. All studies were then screened based on
title and abstract by the lead author. If the study was in-
cluded at this stage the full text was retrieved and
reviewed for eligibility by the lead author. Risk factors
from eligible studies were extracted. No results (associ-
ation between risk factor and glioma) were extracted
from these studies as our interest was identifying puta-
tive risk factors for subsequent MR analysis, not sum-
marizing the results.
The summary genetic instrumental variables for the 36

identified risk factors were primarily collated from
GWAS, details of which are given in Additional file
Table 1. Where the full GWAS results were not avail-
able, the instruments were collated from the NHGRI-
EBI GWAS Catalogue [39]; alternatively when the full
summary results were available, instruments were col-
lated from MR-Base [40]. Genetic instruments were
formed using SNPs shown to robustly (P < 5 × 10− 8) and
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independently (r2 < 0.001) associated with the risk factor
under examination in individuals of European ancestry.
To undertake the MR analysis, we gathered the follow-

ing parameters from the summary results: the regression
coefficient (e.g. beta or log odds ratio) quantifying the
association of each SNP with the exposure of interest
from an additive genetic model; the standard error of
the regression coefficient; the effect allele; non-effect al-
lele; and the effect allele frequency. The effect allele was
the allele that was related to an increased odds/levels of
the exposure (Additional file Table 1).
To instrument allergic disease, we used a shared genetic

instrument of broad allergic disease that considered the
presence of asthma, hay fever or eczema. We chose to in-
strument allergic disease using a shared genetic instru-
ment due to a shared genetic origin that results in the
coexistence of these atopic disorders [41, 42].

Genetic associations of glioma via GWAS meta-analysis
The second stage of the analysis involved the collection of
the outcome data: i.e. the relevant summary genetic data
from a glioma GWAS. These summary data were obtained
from the principal investigators of a glioma GWAS con-
sortia and relate to 5739 cases and 5501 controls from
two independent GWAS studies of European ancestry [43,
44]. To determine whether the risk factors differ between
subtypes we considered glioma as being either glioblast-
oma (3112 cases, 5501 controls) or non-glioblastoma
(2411 cases, 5501 controls). The GWAS information was
provided as summary data from the two different consor-
tia: Glioma International case-control study (GICC) which
is comprised of 4564 cases and 3256 controls; and the
University of Texas M.D. Anderson Cancer center (MDA)
which included 1175 cases and 2236 controls. The individ-
ual GWAS were adjusted for sex, age and the first two
principal components (to reduce the likelihood of con-
founding via population stratification). Individual studies
have restricted statistical power to detect precise effect es-
timates. Thus, to gain a more complete understanding of
glioma risk, we performed a meta-analysis of these two
previously published GWAS [43, 44]. We also performed
a glioblastoma meta-analysis and non-glioblastoma meta-
analysis. GICC provided 2460 glioblastoma cases and
3265 controls and MDA provided 652 glioblastoma cases
and 2236 controls. For non-glioblastoma, GICC com-
prised of 1898 cases and 3265 controls and MDA 513
cases and 2236 controls. Meta-analyses were implemented
using the fixed-effects inverse-variance method, based
upon the β effect estimates and standard errors from each
consortium using METAL (metal-2011-3-25) [45].
LD score regression was used to check the quality of

our meta-analysis by evaluating the degree of genomic
inflation in the glioma GWAS due latent sources of bias
[46, 47]. LD scores were calculated from the meta-

analysis. In order to gain aetiological insights, the genetic
correlation between the MR top findings and glioma
were computed and SNP heritability (the amount of
variation in a trait that is attributable to genetic factors
[48]) for the glioma, glioblastoma and non-glioblastoma
datasets was also calculated.

Two-sample MR analysis
We systematically explored the causal relationship of the
identified risk factors that could be proxied using genetic
instruments on glioma using a multiplicative random ef-
fects inverse-variance weighting (IVW) approach in two
sample MR. Horizontal pleiotropy is a major source of
confounding in MR studies [49, 50], so to minimise this
we performed sensitivity analyses using the weighted
median estimator (WME), the mode-based estimator
(MBE) and MR-Egger regression [51–53]. A consistent
effect across the multiple methods would give us the
strongest evidence for a causal effect and suggest that
our results are not biased by horizontal pleiotropy. Ran-
dom effects IVW assumes that if the causal estimates
due to each SNP differ, these deviations are equal [40].
The WME requires at least half of the genetic informa-
tion to be derived from valid instrumental SNPs, with
stronger SNPs contributing more to the estimate, for the
causal estimate to be unbiased [54]. The MBE clusters
SNPs into groups determined by their similarity of
causal effects and returns the causal effect estimate
based on the cluster that has the greatest number of
SNPs [40], giving an unbiased estimate if the SNPs in
the largest cluster are valid, even if most SNPs are in-
valid instruments. To further assess the impact of hori-
zontal pleiotropy we performed MR-Egger regression, a
type of MR analysis that can quantify the amount of bias
caused by directional pleiotropy (when the average value
of the pleiotropy distribution is not balanced i.e. non-
zero [51]) based upon the intercept from this analysis
[55, 56]. MR-Egger regression provides an unbiased
effect-estimate even if all the SNPs are subject to hori-
zontal pleiotropy, although it requires the InSIDE (in-
strument strength independent of direct effects)
assumption to be valid. MR-Egger regression also re-
quires a large number of instrumental SNPs otherwise
the method is underpowered. Furthermore, to examine
the effect of SNP outliers in the MR analysis, we under-
took a leave-one-out analysis which removes one SNP at
a time and re-calculates the association results [55]. To
assess evidence for heterogeneity, a potential indicator of
horizontal pleiotropy, we used Cochran’s Q statistic [57]
and Rucker’s Q test [58]. In cases where there was evi-
dence for heterogeneity, results were further assessed
through Radial plots, which provide improved visualisa-
tion of outliers [59].
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To increase the likelihood that MR infers the correct
causal direction between an exposure and glioma we ap-
plied directional (Steiger) MR to test for reverse caus-
ation [60]. This calculates the variance explained by the
SNPs that form the exposure and outcome data and
compares these to estimate whether the direction of ef-
fect is orientated from exposure to outcome or vice
versa.
For the non-binary exposures, MR results are reported

as odds ratios (OR) (95% confidence intervals (CI)) per 1
standard deviation (SD) change in each genetically pre-
dicted risk factor. For the binary risk factors, the OR
were converted (by raising the OR and 95% CI by 0.693)
to represent the OR per doubling in the odds of the risk
factor [61].

Polygenic risk score analysis to improve statistical power
Polygenic risk scores (PRS) can be used to assess puta-
tive causal associations [28, 62] (see Additional file Fig-
ure 3). PRS use a less stringent P value threshold for
inclusion of SNPs (P < 1 × 10− 5) and thus increase power
as they capture more trait variance due to a greater
number of genetic variants being included. However,
they assume no horizontal pleiotropy and thus are more
susceptible to false positive associations [63]. The PRS is
equivalent to an MR analysis using a fixed effects IVW
model. To potentially enhance detection of causal asso-
ciations we applied BADGERS (Biobank-wide Associ-
ation Discovery using Genetic Risk Scores) to examine
associations between the instrumental risk factors, where
the full GWAS summary data were available, and glioma
onset using GWAS summary statistics [64].
Of the 36 instrumental risk factors, the full GWAS

summary results were available for 30 traits. PRS were
derived using independent SNPs for each GWAS (P <
1 × 10− 5) based on r2 < 0.001 using genotype data from
European individuals (CEU) from phase 3 (version 5) of
the 1000 Genomes project. PRS were constructed using
the risk factor GWAS data and the glioma meta-analysis
as the outcome.

Power estimation
We performed post-hoc power calculations based on a
method provided by Burgess [65] (see Additional file
Table 2). Power calculations were performed using effect
estimates from the MR analysis to ascertain whether we
had adequate sample size to detect the MR point esti-
mate per SD change in genetically increase in each non-
binary risk factor (α assumed to be 0.05).

Interpretation of results
We analysed the association of 36 genetically instrumented
risk factors with glioma. We imposed a Bonferroni-
corrected significance level to determine statistically

significant results of P < 1 × 10− 3 (0.05 / 36, the amount of
risk factors included in our analysis) and a suggestive
threshold of 1 × 10− 3 ≤ P < 0.05. All MR analyses were per-
formed using the Two-Sample MR package in R [40].

Results
Risk factor selection
Of the 170 studies examining instrumental glioma risk
factors, there were 36 unique risk factors that had suit-
able genetic variants available for instrumentation. Fig-
ure 1 summarizes the screening process which resulted
in the inclusion of 25 studies (Additional file Table 3) in-
vestigating 36 risk factors. Additional file Note 2 sum-
marizes all the risk factors that were identified in the
systematic search before exclusion due to lack of
instrumentation.

Genetic arichitecture of glioma
Univariate LD score regression suggested that the 1,201,
423 common variants we included in the meta-analysis
explained 2.6% of the phenotypic variance of glioma risk
(H2 = 0.0257, S.E. = 0.0425); 1,201,269 SNPs explained
1.1% of the phenotypic variance of glioblastoma risk
(H2 = 0.0115, S.E. = 0.0537); and 1,201,154 SNPs ex-
plained 9.2% of the phenotypic variance of non-
glioblastoma risk (H2 = 0.0928, S.E. = 0.0599). Due to the
limited sample size, genetic correlation between glio-
blastoma and non-glioblastoma tumours could not be
estimated.
For our GWAS meta-analysis, there was little evidence

to suggest inflation of results for glioma, glioblastoma
and non-glioblastoma. The genomic inflation factor λGC
was 1.0345 and the LD score regression intercept 1.045
for glioma; λGC was 1.0315 and the LD score regression
intercept 1.0398 for glioblastoma; and λGC was 1.0165
and the LD score regression intercept 1.0133 for non-
glioblastoma.

Two-sample MR to investigate putative associations with
glioma
Full results for the IVW MR analysis of putative risk fac-
tors are presented for: glioma (Fig. 2), glioblastoma
(Additional file Figure 4) and non-glioblastoma (Add-
itional file Figure 5). A list of risk factors that met at
least the suggestive P value threshold for any subtype
diagnosis are given in Table 1. In short, none of the pu-
tative risk factors reached the strict P value threshold
but six risk factors did meet the weaker threshold for
suggestive evidence: telomere length (risk factor for all
glioma and non-GBM), alcohol consuption (risk factor
for all glioma and GBM), childhood extreme obesity
(risk factor for all glioma and GBM), LDLc levels (pro-
tective factor for non-GBM), allergic disease (risk factor
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for GBM) and trigylcerides levels (protective factor for
non-GBM).

Sensitivity analyses of MR findings
Risk factors that met at least the suggestive P value
threshold and were associated with any subtype were eli-
gible for follow up sensitivity analyses.
The results from the MR-Egger analysis mostly did

not reach statistical significance except in the case of tri-
gylcerides and non-GBM (ORnon-GBM = 0.65, 95%
CInon-GBM = 0.46 to 0.91, Pnon-GBM = 1.2 × 10− 2), which
agrees with the direction of effect from the IVW ana-
lysis. The MR-Egger method hightlights the presence of
pleiotropy in only allergic disease for GBM (intercept =
185.58, Pintercept = 1.86 × 10− 9). The MR-Egger analysis
for alcohol has large confidence intervals due to a lack
of power (four SNPs) indicating the need for larger sam-
ple sizes and better powered analyses.
We compared the results from the MBE and WME

methods against the IVW as a further sensitivity test.
These tests were only significant in the cases of telomere
length in both all glioma and non-GBM and alcohol
consumption in all glioma and GBM. These results are
summarised in Table 1 and fully in Additional file
Table 4.

We performed Cochran’s Q test on our instruments to
test for heterogeneity. This test indicated hetereogeneity
was present in the allergic disease-GBM association
(Q = 187.49, P = 2.44 × 10− 9) which could suggest a vio-
lation of the third MR assumption (that is, SNPs are
only associated with the outcome through their effect on
the exposure).
We used radial IVW to construct radial IVW regres-

sion estimates and lists of outlier SNPs with high hetero-
geneity. Only three associations could be tested this way:
LDLc and non-GBM, which included the null; allergic
disease and GBM, which agreed with the IVW result;
and triglycerides and non-GBM, which included the null.
These results are presented in Additional file Table 4.
We also implemented directionality (Steiger) test to

estimate the orientation of the direction of effect. In
brief, all of the associations that met at least the suggest-
ive threshold showed the correct orientation of effect
(i.e. from exposure to outcome); more in-depth results
are presented in Additional file Table 4.

Polygenic risk score associations
Two traits were associated with all glioma: melanoma
(Pall glioma = 2.12 × 10− 3) and allergic disease (Pall glioma =
1.20 × 10− 2). All other traits did not meet the

Fig. 1 Flow diagram of risk factor inclusion
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significance threshold. Full results are given in Add-
itional file Table 5.
Similar results were seen for glioblastoma (melanoma,

Pglioblastoma = 2.50 × 10− 3; and allergic disease, Pgloblastoma =
1.41 × 10− 2). For non-glioblastoma, we observed only a
positive correlation for melanoma (Pnon-glioblastoma =
1.51 × 10− 2). Full results are given for glioblastoma in

Additional file Table 6 and for non-glioblastoma in Add-
itional file Table 7.

Discussion
This study has systematically identified all published
hypothesised glioma risk factors and applied these to a
rigorous statistical framework that investigated the

Table 1 Associations from the IVW analysis that met at least the suggestive P value threshold. OR, CI and P value are from the IVW
analysis. Results from the three sensitivity analyses (MR Egger, WME and MBE) are given in brief and take three values: “agree”, P
value meets at least 0.05 and direction and magnitude of effect agrees with the IVW results; “disagree”, P value meets at least 0.05
and direction or magnitude of effect does not agree with the IVW results; “uncertain”, when the P value does not meet significance.
Heterogeneity results are from the MR Egger intercept: high values of heterogeneity indicates potential pleiotropy. The instrument
for telomere length did not consist of enough SNPs to conduct this analysis. Full results are given in detail in Additional file Table 4

Risk Factor Subtype OR 95% CI P Value MR Egger WME MBE Heterogeneity (P value)

Telomere length Non-GBM 4.05 1.72 to 9.56 1.38 × 10−3 Uncertain Agree Agree NA

Alcohol consumption GBM 8.37 1.69 to 41.54 9.36 × 10−3 Uncertain Agree Uncertain 0.43 (8.08 × 10−1)

Obesity (childhood extreme) All glioma 1.11 1.02 to 1.21 1.63 × 10−2 Uncertain Uncertain Uncertain 5.19 (2.68 × 10−1)

Obesity (childhood extreme) GBM 1.12 1.02 to 1.22 2.07 × 10−2 Uncertain Uncertain Uncertain 2.56 (6.34 × 10−1)

Telomere length All glioma 4.09 1.13 to 14.86 3.24 × 10−2 Uncertain Agree Uncertain NA

LDLc Non-GBM 0.79 0.63 to 0.99 3.99 × 10−2 Uncertain Uncertain Uncertain 76.71 (5.20 × 10−1)

Alcohol consumption All glioma 4.42 1.07 to 18.30 4.05 × 10−2 Uncertain Agree Uncertain 0.05 (9.75 × 10−1)

Allergic disease GBM 1.29 1.01 to 1.67 4.76 × 10−2 Uncertain Uncertain Uncertain 185.58 (1.86 × 10−9)

Triglycerides Non-GBM 0.77 0.59 to 1.00 4.86 × 10−2 Agree Uncertain Uncertain 77.49 (2.52 × 10−1)

Fig. 2 Inverse-variance weighted estimates for the association between genetically increased risk factors and odds of glioma. LDLc refers to low
density lipoprotein cholesterol and HDLc to high density lipoprotein cholesterol. The ‘lifetime smoking index’ measure, combines multiple
smoking behaviours (smoking initiation, smoking duration, smoking heaviness, and smoking cessation)
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causal relationships between the instrumented candidate
risk factors and glioma incidence. The results from this
approach support previous existing evidence that genet-
ically predicted longer telomeres are associated with in-
creased glioma risk. Additionally, we find suggestive
evidence that the following genetically predicted traits
are risk factors for glioma: increased alcohol consump-
tion increases risk; childhood extreme obesity increases
risk; and increased levels of LDLc and triglycerides de-
crease risk of low-grade glioma (non-glioblastoma). Our
analysis highlighted little causal evidence for other risk
factors reported in the literature.
The evidence we found to support a link between genet-

ically predicted leukocyte telomere length and glioma risk
come from both the PRS we conducted as well as the MR
study. These methods suggest that longer telomeres, as
predicted by genetic proxies, increase risk of glioma, sup-
porting previous MR studies (cases = 1130) and also a
case-control study (cases = 467) [31, 32, 66]. It is import-
ant to note that our results do not suggest that measured
longer telomeres associate with increased glioma risk but
only genetically predicted longer telomeres. The
consistency across studies highlights the robustness of our
result as we used independent glioma GWAS data to the
previous MR studies. The implications of genetically pre-
dicted longer telomere length and glioma risk are dis-
cussed in detail in Haycock et al. (2017) [31]. In short,
telomere shortening is thought to act a tumour suppres-
sor, restricting the proliferation of neural stem cells. Indi-
viduals with longer telomere have greater proliferative
potential and therefore may be more likely to acquire
somatic mutations [31, 67]. This seemingly paradoxical
link between telomere length and carcinogenesis, whereby
longer telomeres, instead of shorter telomeres, lead to an
increased risk of cancer, has yet to be fully elucidated.
Aviv, et al. in their article describe a potential solution to
this paradox based on existing evidence, though further
research is necessary to fully explore this [68].
We found that a genetic liability to allergic disease in-

creases risk of glioblastoma, contrary to previous epi-
demiological evidence which supports an inverse relation
to risk [69]. The concern is whether the underlying rela-
tionship is causal as the majority of support has been de-
rived from case-control studies [70] which are liable to
recall bias due to cognitive impairment [70]. A prospective
cohort-based analysis did not find strong evidence that
atopy protects against glioma [71]. A possible explanation
for the conflicting findings for the relationship between
allergic disease and glioma is due to reverse causation in
such studies – with the presence of glioma causing people
to under-report co-morbidities – resulting in the spurious
generation of an inverse association. This is supported by
the fact that glioblastoma is known to cause immunosup-
pression [72] and therefore may result in a reduction of

atopy expression in glioma patients, making it appear as if
atopy protects against glioma. To limit the potential of re-
verse causation as an explanation of our MR results, we
conducted directional (Steiger) MR and found little evi-
dence that glioma is driving the MR associations we ob-
served. Furthermore, there is a real difference between
genetic liability to allergic disease, which we have investi-
gated, and actual presence of allergies, which would be
commonly studied in observational research. An individ-
ual may be prone to an allergic disease due to their genes,
but not develop one; conversely, environmental factors
may produce allergies in those with no genetic liability at
all. This distinction is key to make and will help further
research into the true link between allergies, atopy, and
glioma risk. Furthermore, for the MR analysis, we used an
updated atopy instrument from a recent GWAS that iden-
tified shared genetic variants of allergic disease. Common
involvement of inflammatory pathways might specula-
tively reflect the mechanism by which allergic disease con-
tributes to glioma risk; however, further research is
needed to investigate this.
We also found three metabolic-related traits were as-

sociated with glioma: genetically predicted childhood ex-
treme obesity increases risk for all glioma and GBM, and
genetically predicted LDLc and triglyceride levels de-
crease risk for non-GBM. Metabolic traits such as these
generally have a high level of interplay that makes disen-
tangling true causality difficult to ascertain. Traits such
as these have been implicated heavily in meningioma –
particularly obesity – but within glioma their effects are
less certain. Particularly interesting is the difference be-
tween subtype diagnosis and how LDLc and triglyceride
levels appear only in non-GBM but not in all glioma or
GBM. These traits would require further follow-up to
ascertain their true causal nature in glioma risk.
Furthermore, genetically predicted alcohol consump-

tion was demonstrated to increase risk in all glioma and
glioblastoma. However, the confidence intervals from
these analyses are very wide and the alcohol SNPs used
as IVs in our analysis only explained 0.1% of the variance
in alcohol consumption. Several observational cohort
and case-control studies have provided evidence that al-
cohol consumption is positively associated with glioma
risk, but the direction and magnitude of this relationship
remains controversial [73–80]. Several potential mecha-
nisms have been suggested to explain the relationship
between alcohol consumption and glioma risk [75].
These proposed mechanisms are speculated to be a con-
sequence of the products of alcohol metabolism [81].
Both the MR point estimate and PRS indicated a positive
link between alcohol consumption and glioblastoma.
However, the wide confidence intervals obtained reflect
the underpowered nature of this sub-group analysis and
the low precision of the estimates. Further analysis with
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larger sample sizes and additional alcohol genetic instru-
ments is required to disentangle causality.
Important within our study is the subtype analyses we

conducted (looking at all glioma, glioblastoma and non-
glioblastoma) due to the extremely heterogeneous nature
of the disease both intra- and inter-tumourally. It has
been shown extensively that glioblastoma exhibits a dif-
ferent genetic profile and variation from lower grade tu-
mours [82]. However, we still chose to conduct an all
glioma analysis, which included any case regardless of
subtype, due to the increase in statistical power gained
from doing so. Similarly, a caveat to subtype analyses
such as this is the loss of statistical power due to lower
sample sizes in an already rare cancer. This resulted in
particularly wide confidence intervals in our MR results
and thus limited robust interpretation of the results. It is
highly likely that glioblastoma and low-grade glioma
have different aetiological drivers that our analysis could
not pick up due to lack of power. Further research with
larger glioblastoma and non-glioblastoma GWAS data-
sets is required to investigate this further.
The results from the PRS analysis indicated that individ-

uals with a genetic liability to melanoma have increased odds
of developing glioma, glioblastoma and non-glioblastoma.
But, in the MR analysis we found little to suggest an associ-
ation between melanoma and glioma. As a method, PRS is
susceptible to a high rate of false positives due to the pres-
ence of horizontal pleiotropy despite increasing statistical
power of complementary methods [63]. Thus, further robust
analyses are required to investigate this result.
Strengths of this analysis include the systematic identi-

fication of hypothesized risk factors and the inclusion of
36 instrumental candidate risk factors for glioma; the in-
clusion of summary data for the risk factors from GWAS
with large sample sizes (to infer reliable causal effect es-
timates); and the use of an MR framework. An advan-
tage of the MR approach is that by using germline
genetics variants as proxies for exposures, bias caused by
reverse causation is avoided, as well as, a reduction in
bias caused by confounding. We implemented PRS to
help improve the power of our analysis and further val-
idate the direction of effect of our findings.
A limitation of Mendelian randomisation is that it can-

not distinguish between the different types of pleiotropy.
There are two types of pleiotropy: vertical, where the in-
strument affects the outcome through the pathway of the
exposure; and horizontal, where the instrument affects the
outcome via a different pathway, bypassing the exposure
of interest. This means that causality, itself a form of verti-
cal pleiotropy, cannot be accurately separated from hori-
zontal pleiotropy. This confounding is hard to address
without extensive knowledge of the underlying biological
systems and mechanisms, which are oftentimes unknown.
However, the presence of horizontal pleiotropy can be

examined using sensitivity analyses, the like of which we
have employed in our research, such as with the MR-
Egger method. This method is still not perfect, however,
due to instruments requiring at least 10 SNPs before a ro-
bust conclusion can be drawn. This means some of our re-
sults could not be analysed using this method, if there
were not enough SNPs consisting the instrument we
constructed.
Our design assumes that the samples used to define the

glioma SNPs and the SNPs used to proxy the risk factors
are illustrative of the same population, in terms of being
comparable in ethnicity, age and sex distribution [83]. If
these assumptions did not hold true, then the size of the
association between each risk factor and glioma may be
biased but such a violation will not necessarily increase
the probability of mistakenly inferring a causal association
if one does not exist [84]. Additionally, spurious associa-
tions may arise because of population stratification [85].
As all our instruments for potential risk factors and out-
come (glioma) were collated from European populations,
population stratification is made less likely but residual
stratification remains a possibility. Not all the risk factors
examined had enough power to detect the causal estimate,
to increase the power would require additional instru-
ments and larger sample sizes.
Furthermore, MR aims to draw causality between ex-

posure and outcome, but the previous point of horizon-
tal pleiotropy remains and can confound such
conclusions. To this end, MR is a hypothesis-generating
method that can guide further research into underlying
mechanisms that drive the relationships identified by the
analysis. Whilst some of our results show a robust asso-
ciation between the risk factor of interest and glioma
risk, further studies with differing sources of confound-
ing are required to accurately conclude causality. These
can include in vitro and in vivo experiments, prospective
cohort studies and other such epidemiological studies.

Conclusion
In summary, by implementing a comprehensive MR study
design, we corroborated previous MR studies suggesting a
causal link between longer telomere length and increased
glioma risk. Our findings suggested a positive association
with genetic liability to allergic diseases. The findings from
our study warrant further research to uncover the mech-
anism that implicates telomere length, allergic disease and
metabolic-related traits (particularly, childhood extreme
obesity and LDLc and triglyceride levels) in glioma onset.
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