516 research outputs found

    Naming and sharing resources across administrative boundaries

    Get PDF
    I tackle the problem of naming and sharing resources across administrative boundaries. Conventional systems manifest the hierarchy of typical administrative structure in the structure of their own mechanism. While natural for communication that follows hierarchical patterns, such systems interfere with naming and sharing that cross administrative boundaries, and therefore cause headaches for both users and administrators. I propose to organize resource naming and security, not around administrative domains, but around the sharing patterns of users. The dissertation is organized into four main parts. First, I discuss the challenges and tradeoffs involved in naming resources and consider a variety of existing approaches to naming. Second, I consider the architectural requirements for user-centric sharing. I evaluate existing systems with respect to these requirements. Third, to support the sharing architecture, I develop a formal logic of sharing that captures the notion of restricted delegation. Restricted delegation ensures that users can use the same mechanisms to share resources consistently, regardless of the origin of the resource, or with whom the user wishes to share the resource next. A formal semantics gives unambiguous meaning to the logic. I apply the formalism to the Simple Public Key Infrastructure and discuss how the formalism either supports or discourages potential extensions to such a system. Finally, I use the formalism to drive a user-centric sharing implementation for distributed systems. I show how this implementation enables end-to-end authorization, a feature that makes heterogeneous distributed systems more secure and easier to audit. Conventionally, gateway services that bridge administrative domains, add abstraction, or translate protocols typically impede the flow of authorization information from client to server. In contrast, end-to-end authorization enables us to build gateway services that preserve authorization information, hence we reduce the size of the trusted computing base and enable more effective auditing. I demonstrate my implementation and show how it enables end-to-end authorization across various boundaries. I measure my implementation and argue that its performance tracks that of similar authorization mechanisms without end-to-end structure. I conclude that my user-centric philosophy of naming and sharing benefits both users and administrators

    Detection of Planetary and Stellar Companions to Neighboring Stars via a Combination of Radial Velocity and Direct Imaging Techniques

    Get PDF
    13 pages, 6 figures, 4 tables, accepted for publication in the Astronomical Journal (submitted 25 Feb 2019; accepted 28 April 2019). Machine readable tables and Posteriors from the RadVel fits are available here: http://stephenkane.net/rvfits.tarThe sensitivities of radial velocity (RV) surveys for exoplanet detection are extending to increasingly longer orbital periods, where companions with periods of several years are now being regularly discovered. Companions with orbital periods that exceed the duration of the survey manifest in the data as an incomplete orbit or linear trend, a feature that can either present as the sole detectable companion to the host star, or as an additional signal overlain on the signatures of previously discovered companion(s). A diagnostic that can confirm or constrain scenarios in which the trend is caused by an unseen stellar rather than planetary companion is the use of high-contrast imaging observations. Here, we present RV data from the Anglo-Australian Planet Search (AAPS) for 20 stars that show evidence of orbiting companions. Of these, six companions have resolved orbits, with three that lie in the planetary regime. Two of these (HD 92987b and HD 221420b) are new discoveries. Follow-up observations using the Differential Speckle Survey Instrument (DSSI) on the Gemini South telescope revealed that 5 of the 20 monitored companions are likely stellar in nature. We use the sensitivity of the AAPS and DSSI data to place constraints on the mass of the companions for the remaining systems. Our analysis shows that a planetary-mass companion provides the most likely self-consistent explanation of the data for many of the remaining systems.Peer reviewedFinal Accepted Versio

    Discovery of a compact companion to a nearby star

    Get PDF
    Radial velocity (RV) searches for exoplanets have surveyed many of the nearest and brightest stars for long-term velocity variations indicative of a companion body. Such surveys often detect high-amplitude velocity signatures of objects that lie outside the planetary mass regime, most commonly those of a low-mass star. Such stellar companions are frequently discarded as false-alarms to the main science goals of the survey, but high-resolution imaging techniques can be employed to either directly detect or place significant constraints on the nature of the companion object. Here, we present the discovery of a compact companion to the nearby star HD 118475. Our Anglo-Australian Telescope RV data allow the extraction of the full Keplerian orbit of the companion, which is found to have a minimum mass of 0.445 M⊙. Follow-up speckle imaging observations at the predicted time of maximum angular separation rule out a main-sequence star as the source of the RV signature at the 3.3σ significance level, implying that the companion must be a low-luminosity compact object, most likely a white dwarf. We provide an isochrone analysis combined with our data that constrain the possible inclinations of the binary orbit. We discuss the eccentric orbit of the companion in the context of tidal circularization timescales and show that non-circular orbit was likely inherited from the progenitor. Finally, we emphasize the need for utilizing such an observation method to further understand the demographics of white dwarf companions around nearby stars

    The K2 Mission: Characterization and Early results

    Full text link
    The K2 mission will make use of the Kepler spacecraft and its assets to expand upon Kepler's groundbreaking discoveries in the fields of exoplanets and astrophysics through new and exciting observations. K2 will use an innovative way of operating the spacecraft to observe target fields along the ecliptic for the next 2-3 years. Early science commissioning observations have shown an estimated photometric precision near 400 ppm in a single 30 minute observation, and a 6-hour photometric precision of 80 ppm (both at V=12). The K2 mission offers long-term, simultaneous optical observation of thousands of objects at a precision far better than is achievable from ground-based telescopes. Ecliptic fields will be observed for approximately 75-days enabling a unique exoplanet survey which fills the gaps in duration and sensitivity between the Kepler and TESS missions, and offers pre-launch exoplanet target identification for JWST transit spectroscopy. Astrophysics observations with K2 will include studies of young open clusters, bright stars, galaxies, supernovae, and asteroseismology.Comment: 25 pages, 11 figures, Accepted to PAS

    All Six Planets Known to Orbit Kepler-11 Have Low Densities

    Full text link
    The Kepler-11 planetary system contains six transiting planets ranging in size from 1.8 to 4.2 times the radius of Earth. Five of these planets orbit in a tightly-packed configuration with periods between 10 and 47 days. We perform a dynamical analysis of the system based upon transit timing variations observed in more than three years of \ik photometric data. Stellar parameters are derived using a combination of spectral classification and constraints on the star's density derived from transit profiles together with planetary eccentricity vectors provided by our dynamical study. Combining masses of the planets relative to the star from our dynamical study and radii of the planets relative to the star from transit depths together with deduced stellar properties yields measurements of the radii of all six planets, masses of the five inner planets, and an upper bound to the mass of the outermost planet, whose orbital period is 118 days. We find mass-radius combinations for all six planets that imply that substantial fractions of their volumes are occupied by constituents that are less dense than rock. The Kepler-11 system contains the lowest mass exoplanets for which both mass and radius have been measured.Comment: 39 pages, 10 figure

    Optical one-way quantum computing with a simulated valence-bond solid

    Full text link
    One-way quantum computation proceeds by sequentially measuring individual spins (qubits) in an entangled many-spin resource state. It remains a challenge, however, to efficiently produce such resource states. Is it possible to reduce the task of generating these states to simply cooling a quantum many-body system to its ground state? Cluster states, the canonical resource for one-way quantum computing, do not naturally occur as ground states of physical systems. This led to a significant effort to identify alternative resource states that appear as ground states in spin lattices. An appealing candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb, and Tasaki (AKLT). It is the unique, gapped ground state for a two-body Hamiltonian on a spin-1 chain, and can be used as a resource for one-way quantum computing. Here, we experimentally generate a photonic AKLT state and use it to implement single-qubit quantum logic gates.Comment: 11 pages, 4 figures, 8 tables - added one referenc

    The use of a 3-dimensional computed tomography bone database to evaluate the risk of distal contact between the rasp tip and the endosteal cortical bone.

    Get PDF
    To use a 3-dimensional computed tomography (CT) bone database to evaluate the risk of distal contact between the rasp tip and the endosteal cortical bone.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site.Publishe

    Factors That Influence Medical Student Selection of an Emergency Medicine Residency Program: Implications for Training Programs

    Full text link
    Objectives:  An understanding of student decision‐making when selecting an emergency medicine (EM) training program is essential for program directors as they enter interview season. To build upon preexisting knowledge, a survey was created to identify and prioritize the factors influencing candidate decision‐making of U.S. medical graduates. Methods:  This was a cross‐sectional, multi‐institutional study that anonymously surveyed U.S. allopathic applicants to EM training programs. It took place in the 3‐week period between the 2011 National Residency Matching Program (NRMP) rank list submission deadline and the announcement of match results. Results:  Of 1,525 invitations to participate, 870 candidates (57%) completed the survey. Overall, 96% of respondents stated that both geographic location and individual program characteristics were important to decision‐making, with approximately equal numbers favoring location when compared to those who favored program characteristics. The most important factors in this regard were preference for a particular geographic location (74.9%, 95% confidence interval [CI] = 72% to 78%) and to be close to spouse, significant other, or family (59.7%, 95% CI = 56% to 63%). Factors pertaining to geographic location tend to be out of the control of the program leadership. The most important program factors include the interview experience (48.9%, 95% CI = 46% to 52%), personal experience with the residents (48.5%, 95% CI = 45% to 52%), and academic reputation (44.9%, 95% CI = 42% to 48%). Unlike location, individual program factors are often either directly or somewhat under the control of the program leadership. Several other factors were ranked as the most important factor a disproportionate number of times, including a rotation in that emergency department (ED), orientation (academic vs. community), and duration of training (3‐year vs. 4‐year programs). For a subset of applicants, these factors had particular importance in overall decision‐making. Conclusions:  The vast majority of applicants to EM residency programs employed a balance of geographic location factors with individual program factors in selecting a residency program. Specific program characteristics represent the greatest opportunity to maximize the success of the immediate interview experience/season, while others provide potential for strategic planning over time. A working knowledge of these results empowers program directors to make informed decisions while providing an appreciation for the limitations in attracting applicants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91198/1/ACEM_1323_sm_DataSupplementS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/91198/2/j.1553-2712.2012.01323.x.pd
    • 

    corecore