41 research outputs found

    The spectral variability and magnetic field characteristics of the Of?p star HD 148937

    Full text link
    We report magnetic and spectroscopic observations and modeling of the Of?p star HD 148937 within the context of the MiMeS LP at the CFHT. Thirty-two high signal-to-noise ratio circularly polarised (Stokes V) spectra and 13 unpolarised (Stokes I) spectra of HD 148937 were acquired in 2009 and 2010. A definite detection of a Stokes V Zeeman signature is obtained in the grand mean of all observations (in both LSD mean profiles and individual spectral lines). The longitudinal magnetic field inferred from the Stokes V LSD profiles is consistently negative, in contrast to the essentially zero field strength measured from the diagnostic null profiles. A period search of equivalent width measurements confirms the previously-reported 7.03 d variability period. The variation of equivalent widths is not strictly periodic: we present evidence for evolution of the amount or distribution of circumstellar plasma. Interpreting the 7.03 d period as the stellar rotational period within the context of the ORM, we have phased the equivalent widths and longitudinal field measurements. The longitudinal field measurements show a weak sinusoidal variation of constant sign, with extrema out of phase with the H{\alpha} variation by about 0.25 cycles. The inferred magnetic configuration confirms the suggestion of Naz\'e et al (2010), who proposed that the weaker variability of HD 148937 as compared to other members of this class is a consequence of the stellar geometry. Based on the derived magnetic properties and published wind characteristics, we find a wind magnetic confinement parameter \eta\ast \simeq 20 and rotation parameter W = 0.12, supporting a picture in which the Halpha emission and other line variability have their origin in an oblique, rigidly rotating magnetospheric structure resulting from a magnetically channeled wind. (Abridged.)Comment: 13 pages, MNRAS. Version 2, small change to Fig. 1

    Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors

    Get PDF
    Background: Limits on the frequency of whole blood donation exist primarily to safeguard donor health. However, there is substantial variation across blood services in the maximum frequency of donations allowed. We compared standard practice in the UK with shorter inter-donation intervals used in other countries. Methods: In this parallel group, pragmatic, randomised trial, we recruited whole blood donors aged 18 years or older from 25 centres across England, UK. By use of a computer-based algorithm, men were randomly assigned (1:1:1) to 12-week (standard) versus 10-week versus 8-week inter-donation intervals, and women were randomly assigned (1:1:1) to 16-week (standard) versus 14-week versus 12-week intervals. Participants were not masked to their allocated intervention group. The primary outcome was the number of donations over 2 years. Secondary outcomes related to safety were quality of life, symptoms potentially related to donation, physical activity, cognitive function, haemoglobin and ferritin concentrations, and deferrals because of low haemoglobin. This trial is registered with ISRCTN, number ISRCTN24760606, and is ongoing but no longer recruiting participants. Findings: 45 263 whole blood donors (22 466 men, 22 797 women) were recruited between June 11, 2012, and June 15, 2014. Data were analysed for 45 042 (99·5%) participants. Men were randomly assigned to the 12-week (n=7452) versus 10-week (n=7449) versus 8-week (n=7456) groups; and women to the 16-week (n=7550) versus 14-week (n=7567) versus 12-week (n=7568) groups. In men, compared with the 12-week group, the mean amount of blood collected per donor over 2 years increased by 1·69 units (95% CI 1·59–1·80; approximately 795 mL) in the 8-week group and by 0·79 units (0·69–0·88; approximately 370 mL) in the 10-week group (p<0·0001 for both). In women, compared with the 16-week group, it increased by 0·84 units (95% CI 0·76–0·91; approximately 395 mL) in the 12-week group and by 0·46 units (0·39–0·53; approximately 215 mL) in the 14-week group (p<0·0001 for both). No significant differences were observed in quality of life, physical activity, or cognitive function across randomised groups. However, more frequent donation resulted in more donation-related symptoms (eg, tiredness, breathlessness, feeling faint, dizziness, and restless legs, especially among men [for all listed symptoms]), lower mean haemoglobin and ferritin concentrations, and more deferrals for low haemoglobin (p<0·0001 for each) than those observed in the standard frequency groups. Interpretation: Over 2 years, more frequent donation than is standard practice in the UK collected substantially more blood without having a major effect on donors' quality of life, physical activity, or cognitive function, but resulted in more donation-related symptoms, deferrals, and iron deficiency. Funding: NHS Blood and Transplant, National Institute for Health Research, UK Medical Research Council, and British Heart Foundation

    Longer-term efficiency and safety of increasing the frequency of whole blood donation (INTERVAL): extension study of a randomised trial of 20 757 blood donors

    Get PDF
    Background: The INTERVAL trial showed that, over a 2-year period, inter-donation intervals for whole blood donation can be safely reduced to meet blood shortages. We extended the INTERVAL trial for a further 2 years to evaluate the longer-term risks and benefits of varying inter-donation intervals, and to compare routine versus more intensive reminders to help donors keep appointments. Methods: The INTERVAL trial was a parallel group, pragmatic, randomised trial that recruited blood donors aged 18 years or older from 25 static donor centres of NHS Blood and Transplant across England, UK. Here we report on the prespecified analyses after 4 years of follow-up. Participants were whole blood donors who agreed to continue trial participation on their originally allocated inter-donation intervals (men: 12, 10, and 8 weeks; women: 16, 14, and 12 weeks). They were further block-randomised (1:1) to routine versus more intensive reminders using computer-generated random sequences. The prespecified primary outcome was units of blood collected per year analysed in the intention-to-treat population. Secondary outcomes related to safety were quality of life, self-reported symptoms potentially related to donation, haemoglobin and ferritin concentrations, and deferrals because of low haemoglobin and other factors. This trial is registered with ISRCTN, number ISRCTN24760606, and has completed. Findings: Between Oct 19, 2014, and May 3, 2016, 20 757 of the 38 035 invited blood donors (10 843 [58%] men, 9914 [51%] women) participated in the extension study. 10 378 (50%) were randomly assigned to routine reminders and 10 379 (50%) were randomly assigned to more intensive reminders. Median follow-up was 1·1 years (IQR 0·7–1·3). Compared with routine reminders, more intensive reminders increased blood collection by a mean of 0·11 units per year (95% CI 0·04–0·17; p=0·0003) in men and 0·06 units per year (0·01–0·11; p=0·0094) in women. During the extension study, each week shorter inter-donation interval increased blood collection by a mean of 0·23 units per year (0·21–0·25) in men and 0·14 units per year (0·12–0·15) in women (both p<0·0001). More frequent donation resulted in more deferrals for low haemoglobin (odds ratio per week shorter inter-donation interval 1·19 [95% CI 1·15–1·22] in men and 1·10 [1·06–1·14] in women), and lower mean haemoglobin (difference per week shorter inter-donation interval −0·84 g/L [95% CI −0·99 to −0·70] in men and −0·45 g/L [–0·59 to −0·31] in women) and ferritin concentrations (percentage difference per week shorter inter-donation interval −6·5% [95% CI −7·6 to −5·5] in men and −5·3% [–6·5 to −4·2] in women; all p<0·0001). No differences were observed in quality of life, serious adverse events, or self-reported symptoms (p>0.0001 for tests of linear trend by inter-donation intervals) other than a higher reported frequency of doctor-diagnosed low iron concentrations and prescription of iron supplements in men (p<0·0001). Interpretation: During a period of up to 4 years, shorter inter-donation intervals and more intensive reminders resulted in more blood being collected without a detectable effect on donors' mental and physical wellbeing. However, donors had decreased haemoglobin concentrations and more self-reported symptoms compared with the initial 2 years of the trial. Our findings suggest that blood collection services could safely use shorter donation intervals and more intensive reminders to meet shortages, for donors who maintain adequate haemoglobin concentrations and iron stores. Funding: NHS Blood and Transplant, UK National Institute for Health Research, UK Medical Research Council, and British Heart Foundation

    Regional Geoid and Gravity Field from a Combination of Airborne and Satellite Data in Dronning Maud Land, East Antarctica

    Get PDF
    SummaryRecently, a variety of gravity observations in Antarctica has become available through extensive e orts of airbornesurveys. Aircrafts serving as multi-instrumentation platforms provide measurements on gravity, bedrocktopography, ice surface topography and ice thickness. Collected datasets are valuable in terms of resolution andhomogeneity, which make them suitable for studying regional geoid determination in selected Antarctic regions.Within this context the German joint project VISA provided an excellent database for improving the regionalgeoid by combining gravity and topographic data from aerogeophysical observations with long-wavelength informationfrom global gravity eld models. Using the remove-compute-restore technique in conjunction withleast-squares collocation a regional geoid for Dronning Maud Land, East Antarctica, will be presented. A signalthreshold of up to 6 m added to the global model that was used as a basis can be expected. The accuracy ofthe regional geoid will be estimated to be at the level of 15 cm.Citation: J. Muller, S. Riedel, M. Scheinert, M. Horwath, R. Dietrich, D. Steinhage, H. Anschutz, W. Jokat(2007), RegionalGeoid and Gravity Field from a Combination of Airborne and Satellite Data in Dronning Maud Land, East Antarctica { OnlineProceedings of the 10th ISAES, edited by A.K. Cooper and C.R. Raymond et al., USGS Open-File Report 2007-xxx, ExtendedAbstract yyy, 1-4.IntroductionThe new datasets provided by the satellite missions CHAMP, GRACE and GOCE (to be launched by theend of 2007) enable a homogeneous determination of the gravity eld. Furthermore, in the polar regions icesurface heights could be determined in a similar quality by ICESat. These new satellite data shall be validatedand densi ed by the German joint project VISA (Validation, Densi cation and Interpretation of Satellite Datafor the Determination of Magnetic Field, Gravity Field, Ice Mass Balance and Structure of the Earth Crust inAntarctica, uitilizing Airborne and Terrestrial Measurements) of TU Dresden and AWI Bremerhaven.For this purpose western and central Dronning Maud Land (DML), East Antarctica, were chosen as areaof investigation. Airborne as well as terrestrial observation campaigns were carried out to provide appropriatedatasets on height and height changes, gravity and gravity changes, magnetics, glaciology and seismology. Incombination with the satellite data these measurements will be applied to yield more detailed models of thegravity eld and the regional geoid, of the crustal structure and litosphere dynamics and of the dynamics andmass balance of the Antarctic ice sheet in the working area.Observation campaignsBetween 2001 and 2005 four airborne observation campaigns and two terrestrial observation campaigns werecarried out in western and central DML in order to conduct geodetic and geophysical measurements (Fig. 1,left). The scienti c program of the aerogeophysical campaigns for the observation of the gravity eld, magnetic eld, ice surface height and ice thickness (Radio Echo Sounding (RES)) contains more than 350 ight-hourswith a line-spacing between 10 and 20 kilometers. The terrestrial eld work took place at two di erent areas,during the season 2003/04 at Schirmacher Oasis - Potsdam Glacier - Wohlthat Mountains and one year later(season 2004/05) at Heimefrontfjella - Kirwanveggen. GPS and seismometer stations on bedrock were installed,kinematic GPS pro les, relative gravimetry on ice and ground penetrating radar (GPR) measurements werecarried out as well as samplings of rn cores and snow pits (Anschutz et al., 2007; Anschutz et al., 2006;Scheinert et al., 2005; Nixdorf et al., 2004).Regional Geoid ImprovementCombining satellite observations from CHAMP and GRACE with terrestrial data, high-resolution models ofthe Earth gravity eld have been obtained. Latest examples of these combination models are EIGEN-CG03C, EIGEN-GL04C (Forste et al., 2005; Forste et al., 2006) and GGM02C (Tapley et al., 2005). In Antarctica, thedetermination of the global gravity eld is problematic becausen due to the remoteness (often inaccessibility)and harsh conditions the terrestrial gravity data coverage features very large gaps. Only for a few smallerregions ground-based or airborne measured gravity was included into the combination. In order to improve theterrestrial gravity coverage and to determine the Antarctic geoid, the IAG Commission Project 2.4 "AntarcticGeoid" (chaired by M. Scheinert) was set into action, which is closely linked to SCAR Expert Group on GeodeticInfrastructure in Antarctica (GIANT) project 3 "Physical Geodesy". An overview on the situation is given in(Scheinert, 2005), and the strategy of regional geoid improvement is discussed in (Scheinert et al., 2007b) for thePrince Charles Mountains region, East Antarctica (PCMEGA), as well as for Palmer Land, Antarctic Peninsula(Scheinert et al., 2007a).Within this context, the VISA observation campaigns de-Figure 2: Free-air Anomalies (preliminary resultswith a spatial resolution of 14 kilometers)scribed above provide an excellent database for the validationof the gravity eld and, more importantly, for the determinationand improvement of the regional geoid. Fig. 2 showspreliminary results for the free-air anomalies derived from airbornemeasurements over the western and central DML witha resolution of 14 kilometer (Riedel and Jokat, 2007). Comparedwith the subglacial topography (Fig. 3, left panel) thestrong correlation between these two datasets is clearly visible.The right panel of Fig. 3 shows the ice surface heightin the area of investigation. The datasets of Fig. 3 a ord toderive the ice-thickness, which will be needed in addition tothe subglacial topography for the computation of an improvedgeoid. The high resolution of these datasets make them muchmore suitable than BEDMAP data (Lythe et al., 2000), whichwere a valuable source of information prior to the VISA radarobservations in DML.Especially in Antarctica problems occur when satellite observationsfrom CHAMP and GRACE up to a certain spherical harmonic degree (typically 120) should be combined with terrestrial data. Geophysically extrapolated gravity anomalies do not necessaily reect the actualgravity eld in Antarctica, though they are inevitable to provide a globally complete data coverage neededfor the solution of the closed surface integrals. For this reason, shorter wavelength information (higher thanspherical harmonic degree 120) is unreliable for most Antarctic areas (Fig. 1, right). This evinces when comparingthe gravity anomalies from EIGEN-GL04C for a harmonic window (degrees 121 to 360) (Fig. 1, right)with the free-air anomalies derived from VISA airborne measurements (Fig. 2). While a higher correlation canbe seen near the coastline, it diminishes in the southern part of DML.For the calculation of the regional geoid the remove-compute-restore technique (RCRT) was applied, whichis discussed in detail e.g. in (Forsberg and Tscherning, 1997) and (Sjoberg, 2005) and which was also usedin the PCMEGA case (Scheinert et al., 2007b). In the remove step, a long-wavelength part (predicted by aglobal gravity eld model) and a short-wavelength part (predicted by topography) are removed from the originalgravity data. In the compute step, the obtained band-pass ltered gravity anomalies are transformed into geoidheights, using least-squares collocation in this study. Least-squares collocation o ers the advantage of providingerror estimates for the resulting geoid. After having carried out the compute step, the long-wavelength part andthe short-wavelength part are restored in the geoid. For the computations, we could make use of the programpackage GRAVSOFT (Forsberg et al., 2003; Tscherning, 1974), which o ers a variety of tools for the geodeticgravity eld modelling.ConclusionCombining gravity and topographic data from VISA aerogeophysical campaigns with a global gravity eldmodel a regional geoid for Dronning Maud Land, East Antarctica, will be presented. Studies in other regionsof Antarctica (Scheinert et al., 2007a; Scheinert et al., 2007b) have shown that a signal threshold of up to 6 mto the global gravity eld model that was used as a basis can be expected when comparing the improved geoidwith the global model up to spherical harmonic degree 120. The accuracy of the regional geoid is estimated tobe at the level of 15 cm. Considering the current data situation in Antarctica, the accuracy level of 1 dm is arealistic and appropriate goal for this area of the world. The data coverage in Antarctica will most likely besubject to major improvements when further airborne surveys are carried out. The International Polar Year2007/ 2008 provides a reasonable framework for international and interdisciplinary cooperation in that eld.SCAR-GIANT project 3 "Physical Geodesy" and IAG Commission Project 2.4 "Antarctic Geoid" work towardsthe goal of closing the gaps in the gravity data coverage and at improving the geoid in Antarctica

    Comparison of bougie-guided insertion of Prosealâ„¢ laryngeal mask airway with digital technique in adults

    No full text
    The Prosealâ„¢ laryngeal mask airway (PLMAâ„¢, Laryngeal Mask Company, UK) was designed to improve ventilatory characteristics and offer protection against regurgitation and gastric insufflation. The PLMA is a modified laryngeal mask airway with large ventral cuff, dorsal cuff and a drain tube. These modifications improve seal around glottis and enable better ventilatory characteristics. The drain tube prevents gastric distension and offers protection against aspiration. There were occasional problems, like failed insertion and inadequate ventilation, in placing PLMAâ„¢ using the classical digital technique. To overcome these problems, newer placement techniques like thumb insertion technique, introducer tool placement and gum elastic bougie (GEB)-aided placement were devised. We compared classical digital placement of PLMAâ„¢ with gum elastic bougie-aided technique in 60 anaesthetised adult patients (with 30 patients in each group) with respect to number of attempts to successful placement, effective airway time, airway trauma during insertion, postoperative airway morbidity and haemodynamic response to insertion. The number of attempts to successful placement, airway trauma during insertion and haemodynamic response to insertion were comparable among the two groups, while effective airway time and oropharyngeal leak pressure were significantly higher in bougie- guided insertion of PLMA. Postoperatively, sore throat was more frequent with digital technique while dysphagia was more frequent with bougie guided technique. Hence gum elastic bougie guided, laryngoscope aided insertion of PLMA is an excellent alternate to classical digital technique

    Figaro! (2007)

    No full text
    1. Poster, 2. Photo, 3. Photo, Photo, 4. Photo, 5. Photo, 6. Photo, 7. Photo, 8. Photo, 9. Photo, 10. Photo, 11. Photo, 12. Photo, 13. Photo, 14. Press ReleaseArchival file for the Glendon College production of Figaro! based on the plays by Beaumarchais, Odon, and Howtath, directed by Aleksander Sasha Lukac. The play was performed February 20th - 24th, 2007
    corecore