1 research outputs found

    Polydopamine Nanoparticles Enhance Drug Release for Combined Photodynamic and Photothermal Therapy

    No full text
    Our study shows a facile two-step method which does not require the use of core templates to load a hydrophobic photosensitizer drug chlorin e6 (Ce6) within polydopamine (PDA) nanoparticles (NPs) while maintaining the intrinsic surface properties of PDA NPs. This structure is significantly different from hollow nanocapsules which are less stiff as they do not possess a core. To our knowledge, there exist no similar studies in the literature on drug loading within the polymer matrix of PDA NPs. We characterized the drug loading and release behavior of the photosensitizer Ce6 and demonstrated the therapeutic efficacy of the combined photodynamic (PDT) and photothermal therapy (PTT) from Ce6 and PDA, respectively, under a single wavelength of 665 nm irradiation on bladder cancer cells. We obtained a saturated loading amount of 14.2 ± 0.85 μM Ce6 in 1 nM PDA NPs by incubating 1 mg/mL dopamine solution with 140 μM of Ce6 for 20 h. The PDA NPs maintained colloidal stability in biological media, whereas the pi–pi (π–π) interaction between PDA and Ce6 enabled a release profile of the photosensitizer until day 5. Interestingly, loading of Ce6 in the polymer matrix of PDA NPs significantly enhanced the cell uptake because of endocytosis. An increased cell kill was observed with the combined PDT + PTT from 1 nM PDA–Ce6 compared to that with PTT alone with 1 nM PDA and PDT alone with 15 μM equivalent concentration of free Ce6. PDA–Ce6 NPs could be a promising PDT/PTT therapeutic agent for cancer therapy
    corecore