1,039 research outputs found

    Receiving threatening or obscene messages from a partner and mental health, self-harm and suicidality: results from the Adult Psychiatric Morbidity Survey

    Get PDF
    PURPOSE: Threatening or obscene messaging is repeated, unwanted texts, emails, letters or cards experienced by the recipient as threatening or obscene, and causing fear, alarm or distress. It is rarely examined as an aspect of intimate partner violence. We describe the prevalence of exposure to threatening/obscene messaging from a current or ex-partner; characteristics of victims; and associations with other forms of violence and abuse, mental disorder, self-harm, and suicidality. METHODS: Cross-sectional probability-sample survey of the general population in England aged 16 + . Multivariable regression modelling tested associations between receipt of threatening/obscene messaging and current common mental disorder, past-year self-harm and suicidality. RESULTS: Threatening/obscene messages were received from a current/ex-partner by 6.6% (95%CI: 5.9-7.3) of adults who had been in a relationship; 1.7% received these in the past year. Victims were more likely to be female, under 35, single or divorced, socioeconomically disadvantaged, and to have experienced other forms of sexual and partner violence and abuse. Those who received threatening/obscene messages in the past year were more likely to experience common mental disorder (adjusted odds ratio 1.89; 1.01-3.55), self-harm (2.31; 1.00-5.33), and suicidal thoughts (2.00; 1.06-3.78). CONCLUSION: Threatening/obscene messaging commonly occurs in the context of intimate partner violence. While often occurring alongside sexual and physical violence, messaging has an additional association with mental disorder and suicidality. Routine enquiry in service settings concerning safety, including those working with people who have escaped domestic violence, should ask about ongoing contact from previous as well as current partners. This should include asking about messaging, as well as other forms of potentially technology-enabled abuse which may become increasingly common

    Initiation of Absconding-Swarm Emigration in the Social Wasp Polybia occidentalis

    Get PDF
    When a colony of the swarm-founding social wasp Polybia occidentals loses its nest to severe weather or predation, the adult population evacuates and temporarily clusters on nearby foliage. Most of the adults remain inactive in the cluster, while foragers bring in nectar and scout wasps search the surrounding area for a new nesting site. After several hours, the scouts stimulate the rest of the swarm to leave the cluster and follow their pheromone trail to the chosen site. How scouts communicate to their swarm-mates that a site has been chosen and how they induce the swarm to depart are unknown. Video records of six Costa Rican swarms were used to quantitatively document changes in the frequencies of social behaviors leading to swarm departure. This was accomplished by going backward through the video record and following the behavior of individuals prior to their departure. Analysis of the behavior of scouts and inactive wasps indicated an increase in the frequency with which scouts bump into inactive wasps prior to swarm departure, as well as a shift in the behavior of inactive wasps from primarily receiving bumps to bumping others before departure. Thus, bumping is propagated by recently activated individuals before they take off. These observations suggest that not only is bumping an activation stimulus that causes swarm members to depart for the new nest site, but it is contagious, leading to its amplification throughout the swarm

    Recursive least squares background prediction of univariate syndromic surveillance data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect.</p> <p>Methods</p> <p>Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method.</p> <p>Results</p> <p>We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts.</p> <p>Conclusion</p> <p>The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the residuals of the RLS forecasts. We compare the detection performance of this algorithm to the W2 method recently implemented at CDC. The modified RLS method gives consistently better sensitivity at multiple background alert rates, and we recommend that it should be considered for routine application in bio-surveillance systems.</p

    Oscillatory correlates of auditory working memory examined with human electrocorticography

    Get PDF
    This work examines how sounds are held in auditory working memory (AWM) in humans by examining oscillatory local field potentials (LFPs) in candidate brain regions. Previous fMRI studies by our group demonstrated blood oxygenation level-dependent (BOLD) response increases during maintenance in auditory cortex, inferior frontal cortex and the hippocampus using a paradigm with a delay period greater than 10s. The relationship between such BOLD changes and ensemble activity in different frequency bands is complex, and the long delay period raised the possibility that long-term memory mechanisms were engaged. Here we assessed LFPs in different frequency bands in six subjects with recordings from all candidate brain regions using a paradigm with a short delay period of 3 s. Sustained delay activity was demonstrated in all areas, with different patterns in the different areas. Enhancement in low frequency (delta) power and suppression across higher frequencies (beta/ gamma) were demonstrated in primary auditory cortex in medial Heschl’s gyrus (HG) whilst non-primary cortex showed patterns of enhancement and suppression that altered at different levels of the auditory hierarchy from lateral HG to superior- and middle-temporal gyrus. Inferior frontal cortex showed increasing suppression with increasing frequency. The hippocampus and parahippocampal gyrus showed low frequency increases and high frequency decreases in oscillatory activity. This work demonstrates sustained activity patterns during AWM maintenance, with prominent low-frequency increases in medial temporal lobe regions

    A sound-sensitive source of alpha oscillations in human non-primary auditory cortex

    Get PDF
    The functional organization of human auditory cortex can be probed by characterizing responses to various classes of sound at different anatomical locations. Along with histological studies this approach has revealed a primary field in posteromedial Heschl's gyrus (HG) with pronounced induced high-frequency (70-150 Hz) activity and short-latency responses that phase-lock to rapid transient sounds. Low-frequency neural oscillations are also relevant to stimulus processing and information flow, however their distribution within auditory cortex has not been established. Alpha activity (7-14 Hz) in particular has been associated with processes that may differentially engage earlier versus later levels of the cortical hierarchy, including functional inhibition and the communication of sensory predictions. These theories derive largely from the study of occipitoparietal sources readily detectable in scalp electroencephalography. To characterize the anatomical basis and functional significance of less accessible temporal-lobe alpha activity we analyzed responses to sentences in seven human adults (four female) with epilepsy who had been implanted with electrodes in superior temporal cortex. In contrast to primary cortex in posteromedial HG, a non-primary field in anterolateral HG was characterized by high spontaneous alpha activity that was strongly suppressed during auditory stimulation. Alpha-power suppression decreased with distance from anterolateral HG throughout superior temporal cortex, and was more pronounced for clear compared to degraded speech. This suppression could not be accounted for solely by a change in the slope of the power spectrum. The differential manifestation and stimulus-sensitivity of alpha oscillations across auditory fields should be accounted for in theories of their generation and function.SIGNIFICANCE STATEMENTTo understand how auditory cortex is organized in support of perception, we recorded from patients implanted with electrodes for clinical reasons. This allowed measurement of activity in brain regions at different levels of sensory processing. Oscillations in the alpha range (7-14 Hz) have been associated with functions including sensory prediction and inhibition of regions handling irrelevant information, but their distribution within auditory cortex is not known. A key finding was that these oscillations dominated in one particular non-primary field, anterolateral Heschl's gyrus, and were suppressed when subjects listened to sentences. These results build on our knowledge of the functional organization of auditory cortex and provide anatomical constraints on theories of the generation and function of alpha oscillations

    Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex

    Get PDF
    Learning complex ordering relationships between sensory events in a sequence is fundamental for animal perception and human communication. While it is known that rhythmic sensory events can entrain brain oscillations at different frequencies, how learning and prior experience with sequencing relationships affect neocortical oscillations and neuronal responses is poorly understood. We used an implicit sequence learning paradigm (an “artificial grammar”) in which humans and monkeys were exposed to sequences of nonsense words with regularities in the ordering relationships between the words. We then recorded neural responses directly from the auditory cortex in both species in response to novel legal sequences or ones violating specific ordering relationships. Neural oscillations in both monkeys and humans in response to the nonsense word sequences show strikingly similar hierarchically nested low-frequency phase and high-gamma amplitude coupling, establishing this form of oscillatory coupling—previously associated with speech processing in the human auditory cortex—as an evolutionarily conserved biological process. Moreover, learned ordering relationships modulate the observed form of neural oscillatory coupling in both species, with temporally distinct neural oscillatory effects that appear to coordinate neuronal responses in the monkeys. This study identifies the conserved auditory cortical neural signatures involved in monitoring learned sequencing operations, evident as modulations of transient coupling and neuronal responses to temporally structured sensory input

    Gender differences in intimate partner violence and psychiatric disorders in England: results from the 2007 adult psychiatric morbidity survey

    Get PDF
    To assess the extent to which being a victim of intimate partner violence (IPV) is associated with psychiatric disorders in men and women. A stratified multistage random sample was used in the third English psychiatric morbidity survey. Psychiatric disorders were measured by the Clinical Interview Schedule (Revised) and screening questionnaires. IPV was measured using British Crime Survey questions. 18.7% (95% CI 17.1–20.4; n = 595 of 3197) of men had experienced some form of IPV compared with 27.8% of women (95% CI 26.2–29.4; n = 1227 of 4206; p < 0.001). IPV was associated with all disorders measured (except eating disorders in men). Physical IPV was significantly linked to psychosis and with substance and alcohol disorders in men and women, but significant associations with common mental disorders (CMDs), post-traumatic stress disorder (PTSD) and eating disorders were restricted to women. Emotional IPV was associated with CMDs in men and women. The high prevalence of experiences of partner violence, and strength of the association with every disorder assessed, suggests enquiry about partner violence is important in identifying a potential risk and maintenance factor for psychiatric disorders, and to ascertain safety, particularly in women as they are at greatest risk of being victims of violence

    Computing Equilibria of Prediction Markets via Persuasion

    Full text link
    We study the computation of equilibria in prediction markets in perhaps the most fundamental special case with two players and three trading opportunities. To do so, we show equivalence of prediction market equilibria with those of a simpler signaling game with commitment introduced by Kong and Schoenebeck (2018). We then extend their results by giving computationally efficient algorithms for additional parameter regimes. Our approach leverages a new connection between prediction markets and Bayesian persuasion, which also reveals interesting conceptual insights

    Hearing Sensation Levels of Emitted Biosonar Clicks in an Echolocating Atlantic Bottlenose Dolphin

    Get PDF
    Emitted biosonar clicks and auditory evoked potential (AEP) responses triggered by the clicks were synchronously recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to wear suction-cup EEG electrodes and to detect targets by echolocation. Three targets with target strengths of −34, −28, and −22 dB were used at distances of 2 to 6.5 m for each target. The AEP responses were sorted according to the corresponding emitted click source levels in 5-dB bins and averaged within each bin to extract biosonar click-related AEPs from noise. The AEP amplitudes were measured peak-to-peak and plotted as a function of click source levels for each target type, distance, and target-present or target-absent condition. Hearing sensation levels of the biosonar clicks were evaluated by comparing the functions of the biosonar click-related AEP amplitude-versus-click source level to a function of external (in free field) click-related AEP amplitude-versus-click sound pressure level. The results indicated that the dolphin's hearing sensation levels to her own biosonar clicks were equal to that of external clicks with sound pressure levels 16 to 36 dB lower than the biosonar click source levels, varying with target type, distance, and condition. These data may be assumed to indicate that the bottlenose dolphin possesses effective protection mechanisms to isolate the self-produced intense biosonar beam from the animal's ears during echolocation
    corecore