37 research outputs found

    The Relationship Between Intermittent Limit Cycles and Postural Instability Associated with Parkinson’s Disease

    Get PDF
    Background: Many disease-specifc factors such as muscular weakness, increased muscle stiffness, varying postural strategies, and changes in postural refexes have been shown to lead to postural instability and fall risk in people with Parkinson’s disease (PD). Recently, analytical techniques, inspired by the dynamical systems perspective on movement control and coordination, have been used to examine the mechanisms underlying the dynamics of postural declines and the emergence of postural instabilities in people with PD. Methods: A wavelet-based technique was used to identify limit cycle oscillations (LCOs) in the anterior–posterior (AP) postural sway of people with mild PD (n = 10) compared to age-matched controls (n = 10). Participants stood on a foam and on a rigid surface while completing a dual task (speaking). Results: There was no signifcant difference in the root mean square of center of pressure between groups. Three out of 10 participants with PD demonstrated LCOs on the foam surface, while none in the control group demonstrated LCOs. An inverted pendulum model of bipedal stance was used to demonstrate that LCOs occur due to disease-specifc changes associated with PD: time-delay and neuromuscular feedback gain. Conclusion: Overall, the LCO analysis and mathematical model appear to capture the subtle postural instabilities associated with mild PD. In addition, these fndings provide insights into the mechanisms that lead to the emergence of unstable posture in patients with PD

    Distinct Timing Mechanisms Produce Discrete and Continuous Movements

    Get PDF
    The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems) to accomplish varying behavioral functions such as speed constraints

    Perception of events is necessary for correcting timing behavior

    No full text

    Synchronization timing is unique for tapping and circle drawing

    No full text

    Synchronization behavior in circle drawing and tapping

    No full text

    Synchronization in repetitive smooth movement requires perceptible events

    No full text
    Accurate timing performance during auditory–motor synchronization has been well documented for finger tapping tasks. It is believed that information pertaining to an event in movement production aids in detecting and correcting for errors between movement cycle completion and the metronome tone. Tasks with minimal event-related information exhibit more variable synchronization and less rapid error correction. Recent work from our laboratory has indicated that a task purportedly lacking an event structure (circle drawing) did not exhibit accurate synchronization or error correction (Studenka & Zelaznik, in press). In the present paper we report on two experiments examining synchronization in tapping and circle drawing tasks. In Experiment 1, error correction processes of an event-timed tapping timing task and an emergently timed circle drawing timing task were examined. Rapid and complete error correction was seen for the tapping, but not for the circle drawing task. In Experiment 2, a perceptual event was added to delineate a cycle in circle drawing, and the perceptual event of table contact was removed from the tapping task. The inclusion of an event produced a marked improvement in synchronization error correction for circle drawing, and the removal of tactile feedback (taking away an event) slightly reduced the error correction response of tapping. Furthermore, the task kinematics of circle drawing remained smooth providing evidence that event structure can be kinematic or perceptual in nature. Thus, synchronization and error correction, characteristic of event timing (Ivry, Spencer, Zelaznik, & Diedrichsen, 2002; Repp, 2005), depends upon the presence of a distinguishable source of sensory information at the timing goal

    The influence of dominant versus non-dominant hand on event and emergent motor timing

    No full text
    It has been hypothesized that timing in tapping utilizes event timing; a clock-like process, whereas timing in circle drawing is emergent. Three experiments examined timing in tapping and circle drawing by the dominant and non-dominant hand. Participants were right-hand dominant college aged males and females. The relationship between variance and the square of the timed interval (the Weber fraction), thought to capture clock-like timekeeping processes, was compared. Furthermore, timing variance was decomposed into a clock and a motor component. The slopes for timing were different for dominant hand tapping and circle drawing, but equal for non-dominant and dominant hand tapping. Negative lag one covariance, consistent with motor implementation variability, was found for non-dominant but not for dominant hand circle drawing (Experiment 1). Practice did not influence this relation (Experiment 2). A significant correlation for clock variability was found between non-dominant hand circle drawing and tapping (Experiment 3). Collectively, these findings indicate that event timing is shareable across hands while emergent timing is specific to an effector. Emergent timing does not appear to be obligatory for the non-dominant hand in circle drawing. We suggest that the use of emergent timing might depend upon the extensive practice experienced by a person’s dominant hand

    Circle drawing does not exhibit auditory-motor synchronization

    No full text
    Differences in timing control processes between tapping and circle drawing have been extensively documented during continuation timing. Differences between event and emergent control processes have also been documented for synchronization timing using emergent tasks that have minimal event-related information. However, it is not known whether the original circle-drawing task also behaves differently than tapping during synchronization. In this experiment, 10 participants performed a table-tapping and a continuous circle-drawing task to an auditory metronome. Synchronization performance was assessed via the value and variability of asynchronies. Synchronization was substantially more difficult in circle drawing than in tapping. Participants drawing timed circles exhibited drift in synchronization error and did not maintain a consistent phase relationship with the metronome. An analysis of temporal anchoring revealed that timing to the timing target was not more accurate than timing to other locations on the circle trajectory. The authors conclude that participants were not able to synchronize movement with metronome tones in the circle-drawing task despite other findings that cyclical tasks do exhibit auditory motor synchronization, because the circle-drawing task is unique and absent of event and cycle position information
    corecore