114 research outputs found

    A Catalog of Spectroscopically Confirmed White Dwarfs from the Sloan Digital Sky Survey Data Release 4

    Get PDF
    We present a catalog of 9316 spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey Data Release 4. We have selected the stars through photometric cuts and spectroscopic modeling, backed up by a set of visual inspections. Roughly 6000 of the stars are new discoveries, roughly doubling the number of spectroscopically confirmed white dwarfs. We analyze the stars by performing temperature and surface gravity fits to grids of pure hydrogen and helium atmospheres. Among the rare outliers are a set of presumed helium-core DA white dwarfs with estimated masses below 0.3 Msun, including two candidates that may be the lowest masses yet found. We also present a list of 928 hot subdwarfs.Comment: Accepted by the Astrophysical Journal Supplements, 25 pages, 24 figures, LaTeX. The electronic catalog, as well as diagnostic figures and links to the spectra, is available at http://das.sdss.org/wdcat/dr4

    Discovery of New Ultracool White Dwarfs in the Sloan Digital Sky Survey

    Full text link
    We report the discovery of five very cool white dwarfs in the Sloan Digital Sky Survey (SDSS). Four are ultracool, exhibiting strong collision induced absorption (CIA) from molecular hydrogen and are similar in color to the three previously known coolest white dwarfs, SDSS J1337+00, LHS 3250 and LHS 1402. The fifth, an ultracool white dwarf candidate, shows milder CIA flux suppression and has a color and spectral shape similar to WD 0346+246. All five new white dwarfs are faint (g > 18.9) and have significant proper motions. One of the new ultracool white dwarfs, SDSS J0947, appears to be in a binary system with a slightly warmer (T_{eff} ~ 5000K) white dwarf companion.Comment: 15 pages, 3 figures, submitted to ApJL. Higher resolution versions of finding charts are available at http://astro.uchicago.edu/~gates/findingchart

    A New Giant Stellar Structure in the Outer Halo of M31

    Full text link
    The Sloan Digital Sky Survey has revealed an overdensity of luminous red giant stars ~ 3 degrees (40 projected kpc) to the northeast of M31, which we have called Andromeda NE. The line-of-sight distance to Andromeda NE is within approximately 50 kpc of M31; Andromeda NE is not a physically unrelated projection. Andromeda NE has a g-band absolute magnitude of ~ -11.6 and central surface brightness of ~ 29 mag/sq.arcsec, making it nearly two orders of magnitude more diffuse than any known Local Group dwarf galaxy at that luminosity. Based on its distance and morphology, Andromeda NE is likely undergoing tidal disruption. Andromeda NE's red giant branch color is unlike that of M31's present-day outer disk or the stellar stream reported by Ibata et al. (2001), arguing against a direct link between Andromeda NE and these structures. However, Andromeda NE has a red giant branch color similar to that of the G1 clump; it is possible that these structures are both material torn off of M31's disk in the distant past, or that these are both part of one ancient stellar stream.Comment: 11 pages, 3 figures; ApJ Letters accepted versio

    A Strategy for Finding Near Earth Objects with the SDSS Telescope

    Full text link
    We present a detailed observational strategy for finding Near Earth Objects (NEOs) with the Sloan Digital Sky Survey (SDSS) telescope. We investigate strategies in normal, unbinned mode as well as binning the CCDs 2x2 or 3x3, which affects the sky coverage rate and the limiting apparent magnitude. We present results from 1 month, 3 year and 10 year simulations of such surveys. For each cadence and binning mode, we evaluate the possibility of achieving the Spaceguard goal of detecting 90% of 1 km NEOs (absolute magnitude H <= 18 for an albedo of 0.1). We find that an unbinned survey is most effective at detecting H <= 20 NEOs in our sample. However, a 3x3 binned survey reaches the Spaceguard Goal after only seven years of operation. As the proposed large survey telescopes (PanStarss; LSST) are at least 5-10 years from operation, an SDSS NEO survey could make a significant contribution to the detection and photometric characterization of the NEO population.Comment: Accepted by AJ -- 12 pages, 11 figure

    Mass-producing spectra: The SDSS spectrographic system

    Full text link
    The Sloan Digital Sky Survey is the largest redshift survey conducted to date, and the principal survey observations have all been conducted on the dedicated SDSS 2.5m and 0.5m telescopes at Apache Point Observatory. While the whole survey has many unique features, this article concentrates on a description of the systems surrounding the dual fibre-input spectrographs that obtain all the survey spectra and that are capable of recording 5,760 individual spectra per night on an industrial, consistent, mass-production basis. It is hoped that the successes and lessons learned will prove instructive for future large spectrographic surveys.Comment: Latex, 12 pages including 1 figure, uses spie.cls and spiebib.bst, accepted for publication in Proc. SPIE vol. 5492, Ground Based Telescopes and Instrumentation conference, Glasgow 2004 Jun

    A New Milky Way Dwarf Galaxy in Ursa Major

    Full text link
    In this Letter, we report the discovery of a new dwarf satellite to the Milky Way, located at (α2000,δ2000\alpha_{2000}, \delta_{2000}) == (158.72,51.92) in the constellation of Ursa Major. This object was detected as an overdensity of red, resolved stars in Sloan Digital Sky Survey data. The color-magnitude diagram of the Ursa Major dwarf looks remarkably similar to that of Sextans, the lowest surface brightness Milky Way companion known, but with approximately an order of magnitude fewer stars. Deeper follow-up imaging confirms this object has an old and metal-poor stellar population and is \sim 100 kpc away. We roughly estimate MV=_V = -6.75 and r1/2=r_{1/2} = 250 pc for this dwarf. Its luminosity is several times fainter than the faintest known Milky Way dwarf. However, its physical size is typical for dSphs. Even though its absolute magnitude and size are presently quite uncertain, Ursa Major is likely the lowest luminosity and lowest surface brightness galaxy yet known.Comment: Replaced with ApJL accepted version. Includes some additional details, corrected references, and minor changes to Figure

    An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data

    Get PDF
    We present an algorithm to photometrically calibrate wide field optical imaging surveys, that simultaneously solves for the calibration parameters and relative stellar fluxes using overlapping observations. The algorithm decouples the problem of "relative" calibrations, from that of "absolute" calibrations; the absolute calibration is reduced to determining a few numbers for the entire survey. We pay special attention to the spatial structure of the calibration errors, allowing one to isolate particular error modes in downstream analyses. Applying this to the Sloan Digital Sky Survey imaging data, we achieve ~1% relative calibration errors across 8500 sq.deg. in griz; the errors are ~2% for the u band. These errors are dominated by unmodelled atmospheric variations at Apache Point Observatory. These calibrations, dubbed "ubercalibration", are now public with SDSS Data Release 6, and will be a part of subsequent SDSS data releases.Comment: 16 pages, 17 figures, matches version accepted in ApJ. These calibrations are available at http://www.sdss.org/dr

    SDSSJ103913.70+533029.7: A Super Star Cluster in the Outskirts of a Galaxy Merger

    Full text link
    We describe the serendipitous discovery in the spectroscopic data of the Sloan Digital Sky Survey of a star-like object, SDSSJ103913.70+533029.7, at a heliocentric radial velocity of +1012 km/s. Its proximity in position and velocity to the spiral galaxy NGC 3310 suggests an association with the galaxy. At this distance, SDSSJ103913.70+533029.7 has the luminosity of a super star cluster and a projected distance of 17 kpc from NGC 3310. Its spectroscopic and photometric properties imply a mass of > 10^6 solar masses and an age close to that of the tidal shells seen around NGC 3310, suggesting that it formed in the event which formed the shells.Comment: Accepted by AJ: 4 figures (1 color

    New Low Accretion-Rate Magnetic Binary Systems and their Significance for the Evolution of Cataclysmic Variables

    Full text link
    Discoveries of two new white dwarf plus M star binaries with striking optical cyclotron emission features from the Sloan Digital Sky Survey (SDSS) brings to six the total number of X-ray faint, magnetic accretion binaries that accrete at rates < 10^{-13} Msun/yr, or <1% of the values normally encountered in cataclysmic variables. This fact, coupled with donor stars that underfill their Roche lobes and very cool white dwarfs, brand the binaries as post common-envelope systems whose orbits have not yet decayed to the point of Roche-lobe contact. They are pre-magnetic CVs, or pre-Polars. The systems exhibit spin/orbit synchronism and apparently accrete by efficient capture of the stellar wind from the secondary star, a process that has been dubbed a ``magnetic siphon''. Because of this, period evolution of the binaries will occur solely by gravitational radiation, which is very slow for periods >3 hr. Optical surveys for the cyclotron harmonics appear to be the only means of discovery, so the space density of pre-Polars could rival that of Polars, and the binaries provide an important channel of progenitors (in addition to the asynchronous Intermediate Polars). Both physical and SDSS observational selection effects are identified that may help to explain the clumping of all six systems in a narrow range of magnetic field strength around 60 MG.Comment: 25 pages, 13 figures, Accepted to Ap
    corecore