3 research outputs found

    Suitability of existing Musa morphological descriptors to characterize East African highland ‘matooke’ bananas

    Get PDF
    Article purchased; Published online: 18 Sept 2017Morphological traits are commonly used for characterizing plant genetic resources. Germplasm characterization should be based on distinctly identifiable, stable and heritable traits that are expressed consistently and are easy to distinguish by the human eye. Characterization and documentation of a representative sample of East African highland bananas (Lujugira–Mutika subgroup) was carried out following an internationally accepted standard protocol for bananas. Eleven cultivars were characterized using an existing set of minimum descriptors (31 qualitative and quantitative traits) with the aim of determining stable descriptors and the ability of these descriptors to distinguish among East African highland banana cultivars. There was variation in stability of these descriptors within cultivars and across the 11 cultivars. Only 10 (32%) out of 31 descriptors studied were stable in the 11 cultivars. However, they had similar scores and therefore are not suitable to distinguish between cultivars within this group. Nonetheless, these 10 descriptors may be useful for distinguishing the East African highland bananas as a group from other groups of bananas. A few descriptors were unique to the cultivar ‘Tereza’ and may be used to distinguish this cultivar from other ‘matooke’ cultivars. None of the quantitative descriptors were stable

    Significant progressive heterobeltiosis in banana crossbreeding

    Get PDF
    Open Access Journal; Published online: 27 Oct 2020Background Heterobeltiosis is the phenomenon when the hybrid’s performance is superior to its best performing parent. Banana (Musa spp. AAA) breeding is a tedious, time-consuming process, taking up to two decades to develop a consumer acceptable hybrid. Exploiting heterobeltiosis in banana breeding will help to select breeding material with high complementarity, thus increasing banana breeding efficiency. The aim of this study was therefore to determine and document the level of heterobeltiosis of bunch weight and plant stature in the East African highland bananas, in order to identify potential parents that can be used to produce offspring with desired bunch weight and stature after a few crosses. Results This research found significant progressive heterobeltiosis in cross-bred ‘Matooke’ (highland cooking) banana hybrids, also known as NARITAs, when grown together across years with their parents and grandparents in Uganda. Most (all except 4) NARITAs exhibited positive heterobeltiosis for bunch weight, whereas slightly more than half of them had negative heterobeltiosis for stature. The secondary triploid NARITA 17 had the highest heterobeltiosis for bunch weight: 249% versus its ‘Matooke’ grandparent and 136% against its primary tetraploid parent. Broad sense heritability (across three cropping cycles) for yield potential and bunch weight were high (0.84 and 0.76 respectively), while that of plant stature was very low (0.0035). There was a positive significant correlation (P < 0.05) between grandparent heterobeltiosis for bunch weight and genetic distance between parents (r = 0.39, P = 0.036), bunch weight (r = 0.7, P < 0.001), plant stature (r = 0.38, P = 0.033) and yield potential (r = 0.59, P < 0.001). Grandparent heterobeltiosis for plant stature was significantly, but negatively, correlated to the genetic distance between parents (r = − 0.6, P < 0.001). Conclusions Such significant heterobeltiosis exhibited for bunch weight is to our knowledge the largest among main food crops. Since bananas are vegetatively propagated, the effect of heterobeltiosis is easily fixed in the hybrids and will not be lost over time after the release and further commercialization of these hybrids

    Crossbreeding east African highland bananas: lessons learnt relevant to the botany of the crop after 21 years of genetic enhancement

    Get PDF
    Open Access JournalEast African highland bananas (EAHB) were regarded as sterile. Their screening for female fertility with “Calcutta 4” as male parent revealed that 37 EAHB were fertile. This was the foundation for the establishment of the EAHB crossbreeding programs by the International Institute of Tropical Agriculture (IITA) and the National Agricultural Research Organization (NARO) in Uganda in the mid-1990s. The aim of this study was to assess the progress and efficiency of the EAHB breeding program at IITA, Sendusu in Uganda. Data on pollinations, seeds generated and germinated, plus hybrids selected between 1995 and 2015 were analyzed. Pollination success and seed germination percentages for different cross combinations were calculated. The month of pollination did not result in significantly different (P = 0.501) pollination success. Musa acuminata subsp. malaccensis accession 250 had the highest pollination success (66.8%), followed by the cultivar “Rose” (66.6%) among the diploid males. Twenty-five EAHB out of 41 studied for female fertility produced up to 305 seeds per pollinated bunch, and were therefore deemed fertile. The percentage of seed germination varied among crosses: 26% for 2x × 4x, 23% for 2x × 2x, 11% for 3x × 2x, and 7% for 4x × 2x. Twenty-seven NARITA hybrids (mostly secondary triploids ensuing from the 4x × 2x) were selected for further evaluation in the East African region. One so far –“NARITA 7”– was officially released to farmers in Uganda. Although pollination of EAHB can be conducted throughout the year, the seed set and germination is low. Thus, further research on pollination conditions and optimization of embryo culture protocols should be done to boost seed set and embryo germination, respectively. More research in floral biology and seed germination as well as other breeding strategies are required to increase the efficiency of the EAHB breeding program
    corecore