163 research outputs found

    Ocean color imagery: Coastal zone color scanner

    Get PDF
    Investigations into the feasibility of sensing ocean color from high altitude for determination of chlorophyll and sediment distributions were carried out using sensors on NASA aircraft, coordinated with surface measurements carried out by oceanographic vessels. Spectrometer measurements in 1971 and 1972 led to development of an imaging sensor now flying on a NASA U-2 and the Coastal Zone Color Scanner to fly on Nimbus G in 1978. Results of the U-2 effort show the imaging sensor to be of great value in sensing pollutants in the ocean

    Measurements of ocean color

    Get PDF
    An airborne instrument for determining ocean color and measurements made with the instrument are discussed. It was concluded that a clear relationship exists between the chlorophyll concentration and the color of the water. High altitude measurements from 50,000 feet are described and the effects of atmospheric scattering on the energy reaching the sensor are examined. The measured spectrum of ocean color at high and low altitudes is plotted

    Infrared Reflectivity of Some Common Minerals

    Get PDF
    Infrared reflectivity of carbonate, sulfate, nitrate and silicate familie

    Thermal radiance spectra 8 to 16 microns. No. 1. White Sands and the Malpais /LAVA/ C-47 aircraft

    Get PDF
    Airborne filter wedge spectrometer recording of earth spectral radient emittance of desert terrain and lava in 8 to 16 microns rang

    Nimbus 7 Coastal Zone Color Scanner (CZCS). Level 2 data product users' guide

    Get PDF
    The coastal zone color scanner (CZCS) is a scanning multispectral radiometer designed for the remote sensing of ocean color parameters from an earth orbiting space platform. A Technical Manual was designed for users of NIMBUS 7 CZCS Level 2 data products. It contains information which describes how the Level 1 data was process to obtain the Level 2 (derived) product. It contains information needed to operate on the data using digital computers and related equipment

    Nimbus 7 Coastal Zone Color Scanner (CZCS). Level 1 data product users' guide

    Get PDF
    The coastal zone color scanner (CZCS) is a scanning multispectral radiometer designed specifically for the remote sensing of Ocean Color parameters from an Earth orbiting space platform. A technical manual which is intended for users of NIMBUS 7 CZCS Level 1 data products is presented. It contains information needed by investigators and data processing personnel to operate on the data using digital computers and related equipment

    Detection of ocean color changes from high altitudes

    Get PDF
    The detection of ocean color changes, thought to be due to chlorophyll concentrations and gelbstoffe variations, is attempted from high altitude (11.3km) and low altitude (0.3km). The atmospheric back scattering is shown to reduce contrast, but not sufficiently to obscure color change detection at high altitudes

    Three Year Aging of Prototype Flight Laser at 10 Khz and 1 Ns Pulses with External Frequency Doubler for the Icesat-2 Mission

    Get PDF
    We present the results of three year life-aging of a specially designed prototype flight source laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and external frequency doubler. The Fibertek-designed, slightly pressurized air, enclosed-container source laser operated at 1064 nm in active Q-switching mode. The external frequency doubler was set in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm discreetly. The external frequency doubler consisted of a Lithium triborate, LiB3O5, crystal operated at non-critical phase-matching. Due to 1064 nm diagnostic needs, the amount of fundamental frequency power available for doubling was 13.7W. The power generated at 532 nm was between 8.5W and 10W, depending on the level of stress and degradation. The life-aging consisted of double stress-step operation for doubler crystal, at 0.35 J/cm2 for almost 1 year, corresponding to normal conditions, and then at 0.93 J/cm2 for the rest of the experiment, corresponding to accelerated testing. We observed no degradation at the first step and linear degradation at the second step. The linear degradation at the second stress-step was related to doubler crystal output surface changes and linked to laser-assisted contamination. We discuss degradation model and estimate the expected lifetime for the flight laser at 532 nm. This work was done within the laser testing for NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime
    • …
    corecore