19 research outputs found

    On the Growth of Al_2 O_3 Scales

    Get PDF
    Understanding the growth of Al2O3 scales requires knowledge of the details of the chemical reactions at the scale–gas and scale–metal interfaces, which in turn requires specifying how the creation/annihilation of O and Al vacancies occurs at these interfaces. The availability of the necessary electrons and holes to allow for such creation/annihilation is a crucial aspect of the scaling reaction. The electronic band structure of polycrystalline Al2O3 thus plays a decisive role in scale formation and is considered in detail, including the implications of a density functional theory (DFT) calculation of the band structure of a Σ7 View the MathML source bicrystal boundary, for which the atomic structure of the boundary was known from an independent DFT energy-minimization calculation and comparisons with an atomic-resolution transmission electron micrograph of the same boundary. DFT calculations of the formation energy of O and Al vacancies in bulk Al2O3 in various charge states as a function of the Fermi energy suggested that electronic conduction in Al2O3 scales most likely involves excitation of both electrons and holes, which are localized on singly charged O vacancies, View the MathML source and doubly charged Al vacancies, View the MathML source, respectively. We also consider the variation of the Fermi level across the scale and bending (“tilting”) of the conduction band minimum and valence band maximum due to the electric field developed during the scaling reaction. The band structure calculations suggest a new mechanism for the “reactive element” effect—a consequence of segregation of Y, Hf, etc., to grain boundaries in Al2O3 scales, which results in improved oxidation resistance—namely, that the effect is due to the modification of the near-band edge grain-boundary defect states rather than any blocking of diffusion pathways, as previously postulated. Secondly, Al2O3 scale formation is dominated by grain boundary as opposed to lattice diffusion, and there is unambiguous evidence for both O and Al countercurrent transport in Al2O3 scale-forming alloys. We postulate that such transport is mediated by migration of grain boundary disconnections containing charged jogs, rather than by jumping of isolated point defects in random high-angle grain boundaries

    To retain or remove the syndesmotic screw: a review of literature

    Get PDF
    Introduction: Syndesmotic positioning screws are frequently placed in unstable ankle fractures. Many facets of adequate placement techniques have been the subject of various studies. Whether or not the syndesmosis screw should be removed prior to weight-bearing is still debated. In this study, the recent literature is reviewed concerning the need for removal of the syndesmotic screw. Materials and methods: A comprehensive literature search was conducted in the electronic databases of the Cochrane Library, Pubmed Medline and EMbase from January 2000 to October 2010. Results: A total of seven studies were identified in the literature. Most studies found no difference in outcome between retained or removed screws. Patients with screws that were broken, or showed loosening, had similar or improved outcome compared to patients with removed screws. Removal of the syndesmotic screws, when deemed necessary, is usually not performed before 8-12 weeks. Conclusion: There is paucity in randomized controlled trials on the absolute need for removal of the syndesmotic screw. However, current literature suggests that it might be reserved for intact screws that cause hardware irritation or reduced range of motion after 4-6 months

    Effective elastic properties and residual stresses in directionally solidified eutectic Al2O3/YAG/ZrO2 ceramics estimated by finite element analysis

    No full text
    International audienceEffective elastic properties and residual stresses were assessed in directionally solidified ternary eutectic ceramic, Al2O3/YAG/ZrO2, by finite element analyses. A 3D finite element model was generated from a CT scan, representative of the microstructure and with a similar volume fraction. Effective elastic properties were calculated by numerical homogenisation. They highlight a quasi-isotropic behaviour of the ternary eutectic ceramics. Despite the difficulties to measure the strain, the dispersion observed in the results and the limited reliability of the materials properties, the results constitute a step towards a better understanding of the material behaviour. Thermal residual stresses induced by the manufacturing were also evaluated. Tensile residual stresses in yttria-stabilised zirconia and compressive residual stresses in YAG and alumina were highlighted. This evaluation also shed light on the influence of the phase morphology in the microstructure. Indeed, the computed spatial distribution of the residual stresses showed that they are different from one position to another due to the variation in phase morphology and also to material properties variability. Therefore, it is important when numerically assessing the thermomechanical properties to take into account the microstructure morphology as well as the variability of material properties
    corecore