35 research outputs found

    Power Management for Energy Systems

    Get PDF
    The thesis deals with control methods for flexible and efficient power consumption in commercial refrigeration systems that possess thermal storage capabilities, and for facilitation of more environmental sustainable power production technologies such as wind power. We apply economic model predictive control as the overriding control strategy and present novel studies on suitable modeling and problem formulations for the industrial applications, means to handle uncertainty in the control problems, and dedicated optimization routines to solve the problems involved. Along the way, we present careful numerical simulations with simple case studies as well as validated models in realistic scenarios. The thesis consists of a summary report and a collection of 13 research papers written during the period Marts 2010 to February 2013. Four are published in international peer-reviewed scientific journals and 9 are published at international peer-reviewed scientific conferences

    The Potential of Economic MPC for Power Management

    Get PDF

    MPC for Wind Power Gradients - Utilizing Forecasts, Rotor Inertia, and Central Energy Storage

    Get PDF
    We consider the control of a wind power plant, possibly consisting of many individual wind turbines. The goal is to maximize the energy delivered to the power grid under very strict grid requirements to power quality. We define an extremely low power output gradient and demonstrate how decentralized energy storage in the turbines ’ inertia combined with a central storage unit or deferrable consumers can be utilized to achieve this goal at a minimum cost. We propose a variation on model predictive control to incorporate predictions of wind speed. Due to the aerodynamics of the turbines the model contains nonconvex terms. To handle this nonconvexity, we propose a sequential convex optimization method, which typically converges in fewer than 10 iterations. We demonstrate our method in simulations with various wind scenarios and prices for energy storage. These simulations show substantial improvements in terms of limiting the power ramp rates (disturbance rejection) at the cost of very little power. This capability is critical to help balance and stabilize the future power grid with a large penetration of intermittent renewable energy sources
    corecore