99 research outputs found

    Organic pollutants in sea-surface microlayer and aerosol in thecoastal environment of Leghorn—(Tyrrhenian Sea)

    Get PDF
    The levels of dissolved and particle-associated n-alkanes, alkylbenzenes, phthalates, PAHs, anionic surfactants and surfactant fluorescent organic matter ŽSFOM. were measured in sea-surface microlayer ŽSML. and sub-surface water ŽSSL. samples collected in the Leghorn marine environment in September and October 1999. Nine stations, located in the Leghorn harbour and at increasing distances from the Port, were sampled three times on the same day. At all the stations, SML concentrations of the selected organic compounds were significantly higher than SSL values and the enrichment factors ŽEFsSML concentrationrSSL concentration. were greater in the particulate phase than in the dissolved phase. SML concentrations varied greatly among the sampling sites, the highest levels Žn-alkanes 3674 mgrl, phthalates 177 mgrl, total PAHs 226 mgrl. being found in the particulate phase in the Leghorn harbour. To improve the knowledge on pollutant exchanges between sea-surface waters and atmosphere, the validity of spray drop adsorption model ŽSDAM. was verified for SFOM, surface-active agents, such as phthalates, and compounds which can interact with SFOM, such as n-alkanes and PAHs. q2001 Elsevier Science B.V. All rights reserved

    Applied microelectronics

    No full text

    Effects of traumatic brain injury on the cholinergic system in the rat

    No full text
    Rats subjected to a mild to moderate fluid percussion injury exhibit memory deficits that are similar to rats that have received lesions of the septohippocampal system. Because the cholinergic system plays a major role in septohippocampal function, we studied the kinetics of the synthetic enzyme for acetylcholine, choline acetyltransferase (ChAT), at 1 h, 24 h, or 5 days after a fluid percussion injury. Decreases in ChAT activity were found in the dorsal hippocampus (25%), frontal (32%), and temporal (23%) cortices 1 h after injury. In the parietal cortex, a greater than 50% increase in ChAT activity was observed at all time intervals assessed. At 5 days after TBI, there was an 18% increase in ChAT activity in the medial septal area. These data provide evidence that a mild to moderate fluid percussion injury produces changes in the cholinergic system in brain areas related to memory
    corecore