3 research outputs found

    Late Na+Current Inhibition by Ranolazine Reduces Torsades de Pointes in the Chronic Atrioventricular Block Dog Model

    Get PDF
    ObjectivesThis study investigated whether ranolazine reduces dofetilide-induced torsades de pointes (TdP) in a model of long QT syndrome with down-regulated K+currents due to hypertrophic remodeling in the dog with chronic atrioventricular block (cAVB).BackgroundRanolazine inhibits the late Na+current (INaL) and is effective against arrhythmias in long QT3 syndromes despite its blocking properties of the rapid component of delayed rectifying potassium current.MethodsRanolazine was administered to cAVB dogs before or after TdP induction with dofetilide and electrophysiological parameters were determined including beat-to-beat variability of repolarization (BVR). In single ventricular myocytes, effects of ranolazine were studied on INaL, action potential duration, and dofetilide-induced BVR and early afterdepolarizations.ResultsAfter dofetilide, ranolazine reduced the number of TdP episodes from 10 ± 3 to 3 ± 1 (p < 0.05) and partially reversed the increase of BVR with no abbreviation of the dofetilide-induced QT prolongation. Likewise, pre-treatment with ranolazine, or using lidocaine as a specific Na+channel blocker, attenuated TdP, but failed to prevent dofetilide-induced increases in QT, BVR, and ectopic activity. In cAVB myocytes, ranolazine suppressed dofetilide-induced early afterdepolarizations in 25% of cells at 5 μmol/l, in 75% at 10 μmol/l, and in 100% at 15 μmol/l. At 5 μmol/l, ranolazine blocked 26 ± 3% of tetrodotoxin-sensitive INaL, and 49 ± 3% at 15 μmol/l. Despite a 54% reduction of INaLamplitude in cAVB compared with control cells, INaLinhibition by 5 μmol/l tetrodotoxin equally shortened relative action potential duration and completely abolished dofetilide-induced early afterdepolarizations.ConclusionsDespite down-regulation of INaLin remodeled cAVB hearts, ranolazine is antiarrhythmic against drug-induced TdP. The antiarrhythmic effects are reflected in concomitant changes of BVR

    Class III antiarrhythmic drugs amiodarone and dronedarone impair KIR2.1 backward trafficking

    Get PDF
    Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking pathways is largely unknown. KIR2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (IK1), are degraded in lysosomes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late-endosome/lysosome system. Here we defined the potential interference in KIR2.1 backward trafficking by amiodarone and dronedarone. Both drugs inhibited IK1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK-KWGF cells, both drugs dose- and time-dependently increased KIR2.1 expression (2.0 ± 0.2-fold with amiodarone: 10 μM, 24 hrs; 2.3 ± 0.3-fold with dronedarone: 5 μM, 24 hrs) and late-endosomal/lysosomal KIR2.1 accumulation. Increased KIR2.1 expression level was also observed in the presence of Nav1.5 co-expression. Augmented KIR2.1 protein levels and intracellular accumulation were also observed in COS-7, END-2, MES-1 and EPI-7 cells. Both drugs had no effect on Kv11.1 ion channel protein expression levels. Finally, amiodarone (73.3 ± 10.3% P < 0.05 at −120 mV, 5 μM) enhanced IKIR2.1 upon 24-hrs treatment, whereas dronedarone tended to increase IKIR2.1 and it did not reach significance (43.8 ± 5.5%, P = 0.26 at −120 mV; 2 μM). We conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced IK1 by inhibiting KIR2.1 degradation

    Class III antiarrhythmic drugs amiodarone and dronedarone impair KIR2.1 backward trafficking

    Get PDF
    Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking pathways is largely unknown. KIR2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (IK 1), are degraded in lysosomes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late-endosome/lysosome system. Here we defined the potential interference in KIR2.1 backward trafficking by amiodarone and dronedarone. Both drugs inhibited IK 1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK-KWGF cells, both drugs dose- and time-dependently increased KIR2.1 expression (2.0 ± 0.2-fold with amiodarone: 10 μM, 24 hrs; 2.3 ± 0.3-fold with dronedarone: 5 μM, 24 hrs) and late-endosomal/lysosomal KIR2.1 accumulation. Increased KIR2.1 expression level was also observed in the presence of Nav1.5 co-expression. Augmented KIR2.1 protein levels and intracellular accumulation were also observed in COS-7, END-2, MES-1 and EPI-7 cells. Both drugs had no effect on Kv11.1 ion channel protein expression levels. Finally, amiodarone (73.3 ± 10.3% P < 0.05 at −120 mV, 5 μM) enhanced IKIR 2.1 upon 24-hrs treatment, whereas dronedarone tended to increase IKIR 2.1 and it did not reach significance (43.8 ± 5.5%, P = 0.26 at −120 mV; 2 μM). We conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced IK 1 by inhibiting KIR2.1 degradation
    corecore