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Torsade de Pointes

Late Na� Current Inhibition by
Ranolazine Reduces Torsades de Pointes
in the Chronic Atrioventricular Block Dog Model

Gudrun Antoons, PHD,* Avram Oros, MD, PHD,* Jet D. M. Beekman, BSC,* Markus A. Engelen, MD,*†
Marien J. C. Houtman, BSC,* Luiz Belardinelli, MD,§ Milan Stengl, PHD,*‡ Marc A. Vos, PHD*

Utrecht, the Netherlands; Munster, Germany; Plzen, Czech Republic; and Palo Alto, California

Objectives This study investigated whether ranolazine reduces dofetilide-induced torsades de pointes (TdP) in a model of
long QT syndrome with down-regulated K� currents due to hypertrophic remodeling in the dog with chronic atrio-
ventricular block (cAVB).

Background Ranolazine inhibits the late Na� current (INaL) and is effective against arrhythmias in long QT3 syndromes de-
spite its blocking properties of the rapid component of delayed rectifying potassium current.

Methods Ranolazine was administered to cAVB dogs before or after TdP induction with dofetilide and electrophysiological
parameters were determined including beat-to-beat variability of repolarization (BVR). In single ventricular myo-
cytes, effects of ranolazine were studied on INaL, action potential duration, and dofetilide-induced BVR and early
afterdepolarizations.

Results After dofetilide, ranolazine reduced the number of TdP episodes from 10 � 3 to 3 � 1 (p � 0.05) and partially re-
versed the increase of BVR with no abbreviation of the dofetilide-induced QT prolongation. Likewise, pre-treatment
with ranolazine, or using lidocaine as a specific Na� channel blocker, attenuated TdP, but failed to prevent dofetilide-
induced increases in QT, BVR, and ectopic activity. In cAVB myocytes, ranolazine suppressed dofetilide-induced early
afterdepolarizations in 25% of cells at 5 �mol/l, in 75% at 10 �mol/l, and in 100% at 15 �mol/l. At 5 �mol/l,
ranolazine blocked 26 � 3% of tetrodotoxin-sensitive INaL, and 49 � 3% at 15 �mol/l. Despite a 54% reduction of
INaL amplitude in cAVB compared with control cells, INaL inhibition by 5 �mol/l tetrodotoxin equally shortened relative
action potential duration and completely abolished dofetilide-induced early afterdepolarizations.

Conclusions Despite down-regulation of INaL in remodeled cAVB hearts, ranolazine is antiarrhythmic against drug-induced
TdP. The antiarrhythmic effects are reflected in concomitant changes of BVR. (J Am Coll Cardiol 2010;55:
801–9) © 2010 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2009.10.033
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he voltage-dependent sodium channels produce a fast
nward current upon depolarization that marks the initial
pstroke of the cardiac action potential. Following activa-
ion, most channels rapidly inactivate, but some sustained
ctivity remains: the late sodium current (INaL) (1). INaL is
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p-regulated in heart failure (2,3), and inhibition of INaL

bolished early afterdepolarizations (EADs) in failing myo-
ytes (4). A link between enhanced INaL and proarrhythmia
as been revealed by our understanding of the long QT3
yndrome: gain-of-function of Na� channels induces tor-
ades de pointes (TdP) (5). These findings have renewed
ur interest in Na� channel blockers as potential antiar-
hythmic strategy. Ranolazine is an antianginal agent that
as been explored recently for its antiarrhythmic action. Its
lock against INaL is more sensitive than for peak Na�

urrent (6) and may be of importance in heart failure where
onduction is already compromised (7). Ranolazine also
locks the rapid component of the delayed rectifying potas-
ium current (IKr) (8,9) and prolongs QT in patients (10),
ut it is not proarrhythmic (8,9,11) and shortens QT and

uppresses arrhythmias in long QT3 syndrome (12–14).
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Likewise, ranolazine stabilized
repolarization in failing myocytes
with prolonged repolarization
and up-regulated INaL (15). In-
terestingly, ranolazine has been
proven antiarrhythmic in long
QT syndromes (LQTS) caused
by mechanisms other than ab-
normal Na� channel activity
(16,17). Ranolazine also lowered
incidence of arrhythmias in pa-
tients who survived an acute cor-
onary syndrome (18), and first
reports in patients with atrial fi-
brillation are promising (19).

The dog with chronic atrio-
ventricular block (cAVB) model
is well-characterized. Its high
susceptibility to TdP relates to
abnormal repolarization: down-
regulation of K� currents and up-
regulation of Na/Ca exchange cur-
rent (20). In this study, the effect
of ranolazine on suppression and
prevention of TdP induced by the
IKr blocker dofetilide was tested
and compared with lidocaine, an INa
blocker with less selectivity than
ranolazine for INaL over peak INa
(21), but with no or much weaker
inhibitory effects on IKr (22). Ar-
rhythmogenic outcome was linked

o electrophysiological parameters, including beat-to-beat vari-
bility of repolarization (BVR) because of its high predictive
alue of TdP risk (23).

ethods

nimal handling was in accordance with the European
irective for the Protection of Vertebrate Animals Used for
xperimental and Other Scientific Purposes (86/609/EU).
he experiments were approved by the Utrecht University
ommittee for Experiments on Animals.

n vivo studies. Thirty-two experiments were performed in
4 adult mongrel dogs with cAVB (24 � 3 kg, Marshall,
orth Rose, New York). We used radiofrequency ablation

o create AVB (24). Experiments were performed 4 weeks
fter AVB when electrical remodeling is completed (24).
etails concerning anesthesia, animal care, data collection,

nd analysis have been described previously (25). Parameters
ere measured before the first extrasystolic beat or 10 min

fter dofetilide, ranolazine at 15 min, and lidocaine at 5 min

Abbreviations
and Acronyms

APD � action potential
duration

BVR � beat-to-beat
variability of repolarization

cAVB � chronic
atrioventricular block

EAD � early
afterdepolarization

EB � ectopic beat

IKr � rapid component of
the delayed rectifying
potassium current

IKs � slow component of
the delayed rectifying
potassium current

INaL � sustained
component of the sodium
current referred to as late
sodium current

LQTS � long QT syndrome

MAPD � monophasic
action potential duration

QTc � corrected QT
interval

STV � short-term beat-to-
beat variability of LV
(M)APD to quantify BVR

TdP � torsades de pointes

TTX � tetrodotoxin
fter the start of infusion. s
To induce TdP, cAVB dogs received a dose of 0.025
g/kg dofetilide over 5 min or until TdP occurred within

his period (Fig. 1A). Noninducible dogs (n � 3) were
xcluded from further study. Ranolazine was given to 5
nimals (Fig. 1A); a second group of 6 dogs received
idocaine (B. Braun Melsungen AG, Melsungen, Germany)
t a dose of 3 mg/kg in 2 min. Six TdP-inducible cAVB
ogs were used for serial testing (3 experiments) to deter-
ine the effect of ranolazine and lidocaine to prevent TdP

nduction (Fig. 2A).
ellular experiments. For cell isolation, we refer to previ-
us publication (26). Age-matched dogs with normal sinus
hythm served as control subjects. Action potentials were
ecorded at 0.5 Hz (Axopatch 200B, MDS Analytic Tech-
ologies, Sunnyvale, California) under whole-cell current-
lamp using the perforated patch technique. Patch pipettes
resistance of 1 to 3 M�) were filled with internal solution
in mmol/l): 130 KCl, 10 HEPES, 5 MgATP, 0.5 MgCl2,
0 NaCl, 1 CaCl2, 0.00026 amphotericin B, pH 7.20 using
OH. External solution contained (in mmol/l): 137 NaCl,
.4 KCl, 0.5 MgCl2, 1.8 CaCl2, 11.8 HEPES, and 10
lucose, pH 7.40 with NaOH. Signals were low-pass
ltered at 2 kHz and sampled at 4 kHz using a Digidata
200 analog-to-digital converter and PClamp 9 software
MDS Analytic Technologies).

Whole-cell Na� currents were measured in ruptured patch
onfiguration. In the solutions, K� was replaced by Cs� to
lock K� currents and nifedipine (20 �mol/l) was added to
lock Ca2� currents. The persistent component of the Na�

urrent, INaL, was measured as the tetrodotoxin (TTX)-
ensitive current elicited by 500-ms depolarizing pulses from
130 to –40 mV. Interval between pulses was 30 s. The current
mplitude was calculated by subtracting a current trace, re-
orded in the presence of 5-�mol/l TTX from a trace under
aseline, and was measured at the end of pulse. Membrane
urrents were sampled at 10 kHz and normalized to cell
apacity (pA/pF). All experiments were done at 37°C.
lasma concentrations. Blood samples were collected from
venous catheter every 5 min during experiment. Heparin-

reated samples were centrifuged at 4,000 rpm at 4°C and
tored at –80°C for further analysis. Concentrations of rano-
azine were determined using high-performance liquid chro-

atography at CV Therapeutics, Palo Alto, California.
tatistics. Data are expressed as mean � SEM. For compar-

sons between groups, unpaired Student t test was used. For
ependent measurements, analysis of variance for repeated
easurements was used with Bonferroni post-hoc testing.
umber of ectopic beats and TdP episodes were compared

sing nonparametric Wilcoxon signed-ranks test or Friedman
nalysis of variance with Student-Newman-Keuls post-hoc
esting for multiple comparisons. Statistical analysis was per-
ormed in SigmaStat version 3.10 (Systat Software, Inc.,
hicago, Illinois). Values of p � 0.05 were considered
ignificant.
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esults

anolazine reduces proarrhythmic activity in cAVB
ogs. Figure 1A shows a representative example of the
entricular rhythm at baseline (left), after dofetilide
middle), and with ranolazine (right). Dofetilide pro-
onged corrected QT interval (QTc), increased short-
erm beat-to-beat variability (STV), and induced TdP
Figs. 1B and 1C). Ranolazine significantly reduced the
umber of TdP episodes (Fig. 1B). This was associated
ith a reduction of STV, while QTc remained prolonged

Fig. 1C). Proarrhythmic activity was not completely
uppressed by ranolazine, as evidenced by the presence of
ultiple ectopic beats (EBs) and TdP episodes (Figs. 1A

A

B

C

dofetilide
(25 µg/kg/5’)

Suppression

nu
m

be
r T

dP
 e

pi
so

de
s

Q
Tc

 (m
s)

baseline d

baseline dofetilide

∗

0

4

8

12

600

500

400

300

-10 -5 0

Figure 1 Suppression of Dofetilide-Induced TdP in cAVB Dogs b

(A) Representative electrocardiogram trace (lead II) under baseline (left), after do

sodes (middle) and suppressive effects of ranolazine (right). (B) Number of TdP e

interval (QTc) (left) and short-term beat-to-beat variable (STV) (right), ndogs � 5. T

Water A, Verheyen J, Xhonneux R, Reneman RS. An improved method to correct th

1989;22:207–17). p � 0.05 *versus baseline, #versus dofetilide. cAVB � chroni
nd 1B) remaining in 4 of 5 dogs. Plasma levels of T
anolazine reached 15.7 � 0.6 �mol/l at 10 min (ndogs � 3),
hich is comparable to values reported in a previous study
ith larger sample size (11).
In prevention experiments (Fig. 2A), ranolazine plasma

evels reached a plateau at 5-min infusion and remained
onstant throughout the experiment; concentration was
0 � 3 �mol/l at 15 min (Fig. 2B). Ranolazine alone did
ot produce significant changes in QTc or STV (Fig. 2C).
espite pre-administration of ranolazine, dofetilide pro-

onged QTc and tended to increase STV, but the latter
ncrease was no longer significant (Fig. 2C, Table 1).
anolazine reduced the number of dofetilide-induced TdP

pisodes (Fig. 2D). Albeit less frequently and of shorter
uration, TdP was still seen in 4 of 6 dogs (Fig. 2D). The
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.05). Single and multiple EBs occurred in the majority of
nimals (5 of 6).
dP suppression and prevention by lidocaine. Suppres-

ion of dofetilide-induced TdP by lidocaine was studied in
animals using a similar protocol as described in Figure 1A

or ranolazine. Results were comparable: lidocaine reduced

ranolazine
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(A) Flow chart. In the prevention experiment, the same dose of dofetilide was give
ranolazine. Arrows indicate start of 15-min ranolazine and 5-min dofetilide infusion
ranolazine (open circle vs. solid circles). *p � 0.05 versus baseline. (D) Number
dence (right) after ranolazine pre-treatment, ndogs � 6. Abbreviations as in Figure
he number of TdP episodes to 1.5 � 2, and TdP remained s
n 2 of 6 dogs. There was no shortening of the dofetilide-
nduced QTc prolongation (478 � 17 ms to 514 � 27 ms),
ut the antiarrhythmic effect was associated with a reduction
f STV (3.7 � 1.2 ms with dofetilide vs. 2.3 � 0.4 ms with
idocaine, p � 0.05).
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ut failed to attenuate dofetilide-induced QT interval prolon-
ation, increases in monophasic action potential duration
MAPD), interventricular dispersion, and STV. As with rano-
azine, dofetilide-induced TdP episodes occurred less fre-
uently in the presence of lidocaine, but were still observed in
of 6 cAVB dogs; multiple EBs were seen in 4 of 6 dogs.
Figure 3 summarizes individual data on STV according to

rrhythmogenic outcome, defined as the occurrence of EBs
r TdP. Effective prevention of arrhythmias either with
idocaine or ranolazine (nexp � 3) was associated with no
hange in STV, whereas an increase in STV preceded
roarrhythmia (nexp � 7).
ate Na� current is reduced in cAVB. The late compo-
ent of the Na� current was measured as the current sensitive
o 5-�mol/l TTX (Fig. 4A, left). The amplitude of the inward
urrent was significantly reduced in cAVB: –0.08 � 0.01 vs.
0.173 � 0.03 pA/pF in control cells (p � 0.05) (Fig. 4A,

ight). Despite its smaller amplitude, the TTX-sensitive

erial Electrophysiological and Proarrhythmic Properties of DofetiliTable 1 Serial Electrophysiological and Proarrhythmic Propertie

Baseline 1 Dofetilide 1 Baseline 2 Ran

R-R interval, ms 1,226 � 148 1,254 � 155 1,574 � 102 1,67

QT interval, ms 412 � 29 577 � 36* 442 � 46 49

QTc, ms 392 � 36 555 � 39* 392 � 38 43

LV MAPD, ms 334 � 27 525 � 34* 362 � 49 41

RV MAPD, ms 274 � 21 361 � 23* 330 � 24 38

�MAPD, ms 54 � 4.3 147 � 27* 53 � 14 4

LV STV, ms 1.2 � 0.1 3.1 � 0.6* 1.6 � 0.3 2

Single EBs 6 � 3 62 � 18* 1 � 0.4

Multiple EBs 0 21 � 8* 0

nr TdPs 0 7 � 2* 0

TdP incidence 0 6/6 0

here were no significant differences within the baseline data. *p � 0.05 versus baseline 1; †ver
EB � ectopic beat; LV � left ventricular; �MAPD � interventricular dispersion of repolarization d

eat-to-beat variability of LV (M)APD to quantify BVR; TdP � torsades de pointes.

Figure 3 Relation Between STV and
Ectopic Activity/TdP (EB/TdP)

Individual changes of STV depicted under baseline, ranolazine (squares) or
lidocaine (circles), and after dofetilide. Data are grouped according to ectopic
beats (EBs) and/or TdP (�EB/TdP, closed symbols, nexp � 7; �EB/TdP, open
symbols, n � 3). Abbreviations as in Figure 1.
o
exp
urrent equally contributed to APD in cAVB: 5-�mol/l
TX shortened APD90 by 29 � 3% in cAVB (n � 9) and
y 28 � 4% in control cells (n � 8, p � NS) (Fig. 4B).
Figure 4C shows the duration of successive APs and STV

uring the time course of a typical experiment where
ofetilide was used to induce EADs, which were typically
receded by AP prolongation and an increase of STV.
ddition of 5-�mol/l TTX fully suppressed EADs, and

eversed the dofetilide-induced increase of APD and STV
o baseline values.
uppression of afterdepolarizations by ranolazine is
oncentration-dependent. In cAVB dogs, total ranolazine
oncentrations were between 7 and 30 �mol/l. Assuming
hat 65% of ranolazine is bound to plasma proteins, the
alculated free drug concentration lies between 5 and 15
mol/l. These concentrations were used for cellular exper-

ments. The proportion of TTX-sensitive current blocked
y ranolazine in cAVB was 26 � 3% at 5 �mol/l (n � 6),
nd 49 � 3% at 15 �mol/l (n � 8).

Figure 5A shows typical recordings of action potentials
nd dofetilide-induced EADs in a cAVB cell, with, in the
ower panel, changes in APD and STV. Early afterdepolar-
zations were suppressed by 15 �mol/l (ncells � 9), although
anolazine did not shorten APD following dofetilide (p �
.27), or significantly reduced STV (p � 0.13) (Fig. 5B).
owever, values were no longer different from baseline. In

he particular example of Figure 5A, EADs were not
uppressed by ranolazine when applied at 5 �mol/l. The
oncentration-dependent suppression of EADs by ranola-
ine is summarized in Figure 5C: in 25% of cAVB cells at
�mol/l (n � 4), versus 75% at 10 �mol/l (n � 4) and in

00% at 15 �mol/l (n � 9).

iscussion

n the cAVB dog model, ranolazine significantly suppressed
nd prevented dofetilide-induced TdP arrhythmias. How-
ver, BVR was only slightly reduced, in line with the

fore and After Ranolazine-LidocaineDofetilide Before and After Ranolazine-Lidocaine

e Dofetilide 2 Baseline 3 Lidocaine Dofetilide 3

4 1,904 � 141 1,499 � 133 1,481 � 129 1,481 � 129

5 644 � 33†‡ 425 � 41 360 � 25† 627 � 41†‡

3 565 � 31†‡ 382 � 34 318 � 20† 586 � 38†‡

9 573 � 56†‡ 323 � 41 281 � 25 522 � 51†‡

4 503 � 41†‡ 270 � 17 247 � 14 352 � 25†‡

5 73 � 26 53 � 29 36 � 11 169 � 44†‡

.3 3.3 � 0.9 1.4 � 0.3 1.2 � 0.2 3.1 � 0.4†‡

84 � 38 1 � 0.3 0 27 � 14

6 � 3 0 0 2 � 1§

2 � 1§ 0 0 1 � 1§

4/6 0 0 3/6

eline 2 to 3; ‡versus ranolazine-lidocaine; §versus dofetilide 1.
; nr TdP � number of torsades de pointes/10 min; QTC � corrected QT interval; STV � short-term
de Bes of

olazin

6 � 7

7 � 4

8 � 4

0 � 4

4 � 2

7 � 1

.0 � 0

1 � 1

0

0

0

sus bas
bservation that proarrhythmic activity was not completely
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bolished. Lidocaine, a specific Na� blocker, had similar
ffects. An interesting finding of the present study was that
nhibition of INaL by TTX fully suppressed dofetilide-
nduced EADs in single cells, despite the fact that INaL was
own-regulated in cAVB. Ranolazine abolished EADs but
nly at higher concentrations. Thus the incomplete antiar-
hythmic activity of ranolazine in cAVB dogs is not due to IKr
lock, but more likely to reduced INaL and concentration-
ependent effects.
emodeling of INaL in hypertrophy vs. heart failure. The

AVB heart develops compensated hypertrophy, and elec-
rical remodeling includes changes in delayed rectifying K�

urrents and Na/Ca exchange (27–29). Additionally, in the
resent study, we found a decrease of INaL. This is at odds
ith heart failure, where INaL is up-regulated despite

maller peak currents (2) and contributes to prolongation
nd abnormal repolarization (4). In cAVB, we previously
eported lower messenger ribonucleic acid expression levels
f cardiac Na� channels together with a reduction of peak
urrent (30).
ossible mechanisms underlying antiarrhythmic effects
f ranolazine. In vitro, the antiarrhythmic properties of
anolazine were reported at first in LQTS type 3 (13,14)

Figure 4 Late Na� Current Is Reduced in cAVB

(A) Tetrodotoxin (TTX)-sensitive currents in control versus cAVB cells (left). Averaged d
4, p � 0.05) (right). (B) Relative action potential duration (APD90) in the presence
APD90 (circles) and STV values (red line) is depicted under baseline, dofetilide (1
ance of early afterdepolarizations (EADs) (indicated by arrow). Abbreviations as in
nd confirmed in failing myocytes with up-regulated INaL r
15). Hence, the efficacy of ranolazine was ascribed to its
NaL-blocking properties. Interestingly, ranolazine was proven
ntiarrhythmic against EADs and TdP caused by mechanisms
ther than abnormal INaL, including enhanced Ca2� channel
ctivity mimicking the LQTS type 8 (16), and through
nhibition of IKr as a model for the LQTS type 2 (8). Reduced
ransmural dispersion as well as a decrease of repolarization
ariability were proposed as antiarrhythmic mechanisms
13,15,16). BVR originates in the plateau phase of the action
otential and INaL may indeed contribute to variability (31). In
AVB, ranolazine attenuated changes in dofetilide-induced
VR, but only to a limited extent.
Ranolazine prevents excessive Ca2� loading of the cell by

owering Na� levels through inhibition of INaL (32). In
AVB, Na� levels are high, which enhances Ca2� loading
33). The subsequent increase of sarcoplasmic reticulum
a2� release may facilitate EADs by promoting inward
a/Ca exchange current allowing Ca2� window currents to

evelop, and more Ca2� channels may be available for
eactivation due to a larger recovery from release-dependent
nactivation (28,34). In addition, high Ca2� loads favor
pontaneous Ca2� release and delayed afterdepolarizations
27). By reversing the increased Na� levels, ranolazine may

current densities (pA/pF) in 6 control cells (ndogs � 3) and 12 cAVB cells (ndogs �

�mol/l TTX in cAVB (n � 9) versus control cells (n � 8, NS). (C) Time course of
/l), and TTX (5 �mol/l) in a cAVB cell. Addition of TTX started after the appear-
1.
ata of
of 5

�mol
Figure
educe triggered activity in cAVB.



L
i
c
r
r
c
i
e
e
c
u
a

i
i

K
p
p
i
t
t

s
5
w
d
b
i
a

807JACC Vol. 55, No. 8, 2010 Antoons et al.
February 23, 2010:801–9 Antiarrhythmic Effects of Ranolazine
imited antiarrhythmic potential of Na� channel blockers
n cAVB. Although TdP occurs less, ranolazine did not
ompletely abolish ectopic activity. At the therapeutic range,
anolazine blocks IKr (8). In the remodeled cAVB heart with
educed repolarization reserve, an additional block of IKr could
onfound the antiarrhythmic effects of ranolazine through
nhibition of INaL. Incomplete antiarrhythmic activity, how-
ver, was also seen with lidocaine. This agent has no inhibitory
ffects on IKr at clinically relevant concentrations and is
onsidered a selective blocker of INa (22). It is therefore
nlikely that the IKr block contributes to the incomplete
ntiarrhythmic potential of ranolazine.

The main target for ranolazine, INaL, is decreased and not
ncreased in the cAVB heart. The block of INaL by ranolazine
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(A) Action potentials in a cAVB cell are shown during ranolazine following dofetilid
STV (red line), and EAD occurrence. Early afterdepolarizations continued with 5-�m
STV (lower). Averaged data from 9 cAVB cells (ndogs � 5), *p � 0.05 versus base
of ranolazine. Abbreviations as in Figures 1 and 4.
s insufficient to balance the down-regulation of repolarizing a
� currents (IKs [slow component of the delayed rectifying
otassium current], IKr) and ranolazine therefore cannot com-
letely prevent or suppress proarrhythmia. On the other hand,
n conditions with increased INaL (LQTS type 3, heart failure)
he block of INaL should be sufficient as documented in LQTS
ype 3 (12,14) and/or heart failure (15).

Interestingly, in single cells, 15-�mol/l ranolazine fully
uppressed EADs, whereas lower concentrations of
�mol/l could not. This concentration-dependent effect
as also observed by others (8). On a background of
own-regulated INaL, the higher degree of Na� block might
e required to tip the balance toward strengthened repolar-
zation preventing the development of EADs despite block-
ge of IKr. In the intact animal, the concentration of
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or complete suppression of EADs. Higher plasma concen-
rations such as 20 �mol/l would far exceed the therapeutic
ange (2 to 6 �mol/l) and could experimentally not be
chieved in the dog.
VR. BVR is a reliable parameter to predict drug-induced
dP and is superior to QT interval prolongation. A torsa-
ogenic drug increases BVR, and this is independent of
otal duration of repolarization; a drug that does not
ncrease BVR is considered safe (20). Fewer studies have
ddressed the potential of BVR for predicting successful
ntiarrhythmic treatment, where one expects a decrease
nd/or prevention of BVR increase if the drug is antiar-
hythmic (35). The strong antiarrhythmic activity of the
a2� channel antagonist flunarizine, evidenced by complete

nhibition of arrhythmogenic events, is associated with full
eversal of BVR to baseline levels and lack of increase upon
n arrhythmogenic challenge (36) and is in support of this
remise. This finding is unlike the modest effects of Na�

lockers on BVR, which correspond to the inability of the
lockers to fully prevent or suppress EBs and TdP. Proar-
hythmic outcome was related to an increase of BVR in the
usceptible animal and confirms the value of BVR as a
arker of proarrhythmic risk. BVR was reflected already in

ctopic beat formation (Fig. 3). In the noninducible ani-
als, there was no change of BVR.
linical implications. The observation that ranolazine did
ot produce any proarrhythmic effects, rather was antiar-
hythmic against dofetilide-induced TdP and EADs, fur-
her substantiates that ranolazine is a safe drug despite
Kr-blocking properties. The concentration at which maxi-
al antiarrhythmic effects were seen in the setting of

educed INaL in the cAVB model (15 �mol/l) was approx-
mately 1.5 to 3 times higher than the clinical therapeutic
oncentrations. Yet, antiarrhythmic efficacy at therapeutic
oncentrations has been documented in the MERLIN–
IMI 36 (Metabolic Efficiency with Ranolazine for Less

schemia in Non-ST-Elevation Acute Coronary Syndromes–
hrombolysis In Myocardial Infarction 36) trial (18).

onclusions

he antiarrhythmic properties of ranolazine are most obvi-
us under conditions of abnormal and increased INaL,
ncluding LQTS type 3. Albeit with less efficacy, ranolazine
nd other Na� blockers are also antiarrhythmic against
ADs and TdP in cAVB dogs with acquired LQTS,
espite down-regulation of INaL due to remodeling. Anti-
rrhythmic effects were reflected in BVR, in single myocytes
s well as in the intact animal.
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