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Torsade de Pointes

Late Na™ Current Inhibition by
Ranolazine Reduces Torsades de Pointes
in the Chronic Atrioventricular Block Dog Model

Gudrun Antoons, PHD,* Avram Oros, MD, PHD,* Jet D. M. Beekman, BSc,* Markus A. Engelen, MD,*f
Marien J. C. Houtman, BSc,* Luiz Belardinelli, MD,§ Milan Stengl, PHD,* Marc A. Vos, PHD*

Utrecht, the Netherlands; Munster, Germany; Plzen, Czech Republic; and Palo Alto, California

Objectives This study investigated whether ranolazine reduces dofetilide-induced torsades de pointes (TdP) in a model of
long QT syndrome with down-regulated K* currents due to hypertrophic remodeling in the dog with chronic atrio-

ventricular block (cAVB).

Background Ranolazine inhibits the late Na™ current (I, ) and is effective against arrhythmias in long QT3 syndromes de-

spite its blocking properties of the rapid component of delayed rectifying potassium current.

Methods Ranolazine was administered to cAVB dogs before or after TdP induction with dofetilide and electrophysiological
parameters were determined including beat-to-beat variability of repolarization (BVR). In single ventricular myo-

cytes, effects of ranolazine were studied on I, , action potential duration, and dofetilide-induced BVR and early

afterdepolarizations.

Results

After dofetilide, ranolazine reduced the number of TdP episodes from 10 = 3 to 3 = 1 (p < 0.05) and patrtially re-

versed the increase of BVR with no abbreviation of the dofetilide-induced QT prolongation. Likewise, pre-treatment
with ranolazine, or using lidocaine as a specific Na* channel blocker, attenuated TdP, but failed to prevent dofetilide-
induced increases in QT, BVR, and ectopic activity. In cAVB myocytes, ranolazine suppressed dofetilide-induced early
afterdepolarizations in 25% of cells at 5 umol/I, in 75% at 10 umol/l, and in 100% at 15 umol/I. At 5 wmol/I,
ranolazine blocked 26 = 3% of tetrodotoxin-sensitive Iy, , and 49 = 3% at 15 umol/I. Despite a 54% reduction of
Iy @mplitude in cAVB compared with control cells, Iy, inhibition by 5 umol/I tetrodotoxin equally shortened relative
action potential duration and completely abolished dofetilide-induced early afterdepolarizations.

Conclusions

Despite down-regulation of Iy, in remodeled cAVB hearts, ranolazine is antiarrhythmic against drug-induced
TdP. The antiarrhythmic effects are reflected in concomitant changes of BVR.

(J Am Coll Cardiol 2010;55:

801-9) © 2010 by the American College of Cardiology Foundation

The voltage-dependent sodium channels produce a fast
inward current upon depolarization that marks the initial
upstroke of the cardiac action potential. Following activa-
tion, most channels rapidly inactivate, but some sustained
activity remains: the late sodium current (In,p) (1). In,r is
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up-regulated in heart failure (2,3), and inhibition of Iy,
abolished early afterdepolarizations (EAD:s) in failing myo-
cytes (4). A link between enhanced Iy,; and proarrhythmia
has been revealed by our understanding of the long QT3
syndrome: gain-of-function of Na™ channels induces tor-
sades de pointes (TdP) (5). These findings have renewed
our interest in Na™ channel blockers as potential antiar-
rhythmic strategy. Ranolazine is an antianginal agent that
has been explored recently for its antiarrhythmic action. Its
block against Iy, is more sensitive than for peak Na®
current (6) and may be of importance in heart failure where
conduction is already compromised (7). Ranolazine also
blocks the rapid component of the delayed rectifying potas-
stum current (Ig,) (8,9) and prolongs QT in patients (10),
but it is not proarrhythmic (8,9,11) and shortens QT and
suppresses arrhythmias in long QT3 syndrome (12-14).
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Abbreviations
and Acronyms

APD = action potential
duration

BVR = beat-to-beat
variability of repolarization

cAVB = chronic
atrioventricular block

EAD = early
afterdepolarization

EB = ectopic beat

Ix, = rapid component of
the delayed rectifying
potassium current

Ixs = slow component of
the delayed rectifying
potassium current

IyaL = sustained
p t of the sodi

current referred to as late
sodium current

LQTS = long QT syndrome

MAPD = monophasic
action potential duration

QTc = corrected QT
interval

STV = short-term beat-to-
beat variability of LV
(M)APD to quantify BVR

TdP = torsades de pointes

TTX = tetrodotoxin

Likewise, ranolazine stabilized
repolarization in failing myocytes
with prolonged repolarization
and up-regulated Iy, (15). In-
terestingly, ranolazine has been
proven antiarrhythmic in long
QT syndromes (LQTS) caused
by mechanisms other than ab-
normal Na® channel activity
(16,17). Ranolazine also lowered
incidence of arrhythmias in pa-
tients who survived an acute cor-
onary syndrome (18), and first
reports in patients with atrial fi-
brillation are promising (19).
The dog with chronic atrio-
ventricular block (cAVB) model
is well-characterized. Its high
susceptibility to TdP relates to
abnormal repolarization: down-
regulation of K™ currents and up-
regulation of Na/Ca exchange cur-
rent (20). In this study, the effect
of ranolazine on suppression and
prevention of TdP induced by the
I, blocker dofetilide was tested
and compared with lidocaine, an I,
blocker with less selectivity than
ranolazine for Iy, over peak Iy,
(21), but with no or much weaker
inhibitory effects on Iy, (22). Ar-
rhythmogenic outcome was linked

to electrophysiological parameters, including beat-to-beat vari-
ability of repolarization (BVR) because of its high predictive
value of TdP risk (23).

Methods

Animal handling was in accordance with the European
Directive for the Protection of Vertebrate Animals Used for
Experimental and Other Scientific Purposes (86/609/EU).
The experiments were approved by the Utrecht University
Committee for Experiments on Animals.

In vivo studies. Thirty-two experiments were performed in
14 adult mongrel dogs with cAVB (24 + 3 kg, Marshall,
North Rose, New York). We used radiofrequency ablation
to create AVB (24). Experiments were performed 4 weeks
after AVB when electrical remodeling is completed (24).
Details concerning anesthesia, animal care, data collection,
and analysis have been described previously (25). Parameters
were measured before the first extrasystolic beat or 10 min
after dofetilide, ranolazine at 15 min, and lidocaine at 5 min
after the start of infusion.
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To induce TdP, cAVB dogs received a dose of 0.025

mg/kg dofetilide over 5 min or until TdP occurred within
this period (Fig. 1A). Noninducible dogs (n = 3) were
excluded from further study. Ranolazine was given to 5
animals (Fig. 1A); a second group of 6 dogs received
lidocaine (B. Braun Melsungen AG, Melsungen, Germany)
at a dose of 3 mg/kg in 2 min. Six TdP-inducible cAVB
dogs were used for serial testing (3 experiments) to deter-
mine the effect of ranolazine and lidocaine to prevent TdP
induction (Fig. 2A).
Cellular experiments. For cell isolation, we refer to previ-
ous publication (26). Age-matched dogs with normal sinus
rhythm served as control subjects. Action potentials were
recorded at 0.5 Hz (Axopatch 200B, MDS Analytic Tech-
nologies, Sunnyvale, California) under whole-cell current-
clamp using the perforated patch technique. Patch pipettes
(resistance of 1 to 3 M) were filled with internal solution
(in mmol/1): 130 KCl, 10 HEPES, 5 MgATP, 0.5 MgCl,,
10 NaCl, 1 CaCl,, 0.00026 amphotericin B, pH 7.20 using
KOH. External solution contained (in mmol/l): 137 NaCl,
5.4 KCl, 0.5 MgCl,, 1.8 CaCl,, 11.8 HEPES, and 10
glucose, pH 7.40 with NaOH. Signals were low-pass
filtered at 2 kHz and sampled at 4 kHz using a Digidata
1200 analog-to-digital converter and PClamp 9 software
(MDS Analytic Technologies).

Whole-cell Na™ currents were measured in ruptured patch
configuration. In the solutions, K" was replaced by Cs* to
block K™ currents and nifedipine (20 pmol/l) was added to
block Ca** currents. The persistent component of the Na™
current, Iy,r, was measured as the tetrodotoxin (TTX)-
sensitive current elicited by 500-ms depolarizing pulses from
-130 to —40 mV. Interval between pulses was 30 s. The current
amplitude was calculated by subtracting a current trace, re-
corded in the presence of 5-pumol/l TTX from a trace under
baseline, and was measured at the end of pulse. Membrane
currents were sampled at 10 kHz and normalized to cell
capacity (pA/pF). All experiments were done at 37°C.
Plasma concentrations. Blood samples were collected from
a venous catheter every 5 min during experiment. Heparin-
treated samples were centrifuged at 4,000 rpm at 4°C and
stored at —80°C for further analysis. Concentrations of rano-
lazine were determined using high-performance liquid chro-
matography at CV Therapeutics, Palo Alto, California.
Statistics. Data are expressed as mean *+ SEM. For compar-
isons between groups, unpaired Student # test was used. For
dependent measurements, analysis of variance for repeated
measurements was used with Bonferroni post-hoc testing.
Number of ectopic beats and TdP episodes were compared
using nonparametric Wilcoxon signed-ranks test or Friedman
analysis of variance with Student-Newman-Keuls post-hoc
testing for multiple comparisons. Statistical analysis was per-
formed in SigmaStat version 3.10 (Systat Software, Inc.,
Chicago, Illinois). Values of p < 0.05 were considered

significant.
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Suppression of Dofetilide-Induced TdP in cAVB Dogs by Ranolazine

(A) Representative electrocardiogram trace (lead Il) under baseline (left), after dofetilide (middle), and during ranolazine (right) showing torsades de pointes (TdP) epi-
sodes (middle) and suppressive effects of ranolazine (right). (B) Number of TdP episodes counted over a 10-min period, Ndogs = 5. (C) Averaged data for corrected QT
interval (QTc) (left) and shortterm beat-to-beat variable (STV) (right), ny.es = 5. The QT intervals were corrected for heart rate using the Van de Water method (Van de
Water A, Verheyen J, Xhonneux R, Reneman RS. An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. J Pharmacol Meth
1989;22:207-17). p < 0.05 *versus baseline, #versus dofetilide. cAVB = chronic atrioventricular block.

Results

Ranolazine reduces proarrhythmic activity in cAVB
dogs. Figure 1A shows a representative example of the
ventricular rhythm at baseline (left), after dofetilide
(middle), and with ranolazine (right). Dofetilide pro-
longed corrected QT interval (QTc¢), increased short-
term beat-to-beat variability (STV), and induced TdP
(Figs. 1B and 1C). Ranolazine significantly reduced the
number of TdP episodes (Fig. 1B). This was associated
with a reduction of STV, while QT¢ remained prolonged
(Fig. 1C). Proarrhythmic activity was not completely
suppressed by ranolazine, as evidenced by the presence of
multiple ectopic beats (EBs) and TdP episodes (Figs. 1A
and 1B) remaining in 4 of 5 dogs. Plasma levels of

ranolazine reached 15.7 = 0.6 umol/l at 10 min (ng,, = 3),
which is comparable to values reported in a previous study
with larger sample size (11).

In prevention experiments (Fig. 2A), ranolazine plasma
levels reached a plateau at 5-min infusion and remained
constant throughout the experiment; concentration was
20 = 3 umol/1 at 15 min (Fig. 2B). Ranolazine alone did
not produce significant changes in QTc or STV (Fig. 2C).
Despite pre-administration of ranolazine, dofetilide pro-
longed QT¢ and tended to increase STV, but the latter
increase was no longer significant (Fig. 2C, Table 1).
Ranolazine reduced the number of dofetilide-induced TdP
episodes (Fig. 2D). Albeit less frequently and of shorter
duration, TdP was still seen in 4 of 6 dogs (Fig. 2D). The
TdP duration was shortened from 11 £ 2sto 5 = 2s(p <
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(A) Flow chart. In the prevention experiment, the same dose of dofetilide was given as in control. Time between experiments was 2 weeks. (B) Plasma concentration of
ranolazine. Arrows indicate start of 15-min ranolazine and 5-min dofetilide infusion. (C) Dofetilide-induced changes in QTc interval (left) and STV (right), before and after
ranolazine (open circle vs. solid circles). *p < 0.05 versus baseline. (D) Number of TdP episodes (left, #p < 0.05 dofetilide vs. dofetilide after ranolazine) and inci-

0.05). Single and multiple EBs occurred in the majority of
animals (5 of 6).

TdP suppression and prevention by lidocaine. Suppres-
sion of dofetilide-induced TdP by lidocaine was studied in
6 animals using a similar protocol as described in Figure 1A
for ranolazine. Results were comparable: lidocaine reduced
the number of TdP episodes to 1.5 * 2, and TdP remained

in 2 of 6 dogs. There was no shortening of the dofetilide-
induced QTc prolongation (478 = 17 ms to 514 = 27 ms),
but the antiarrhythmic effect was associated with a reduction
of STV (3.7 = 1.2 ms with dofetilide vs. 2.3 * 0.4 ms with
lidocaine, p < 0.05).

The results of the prevention experiments with lidocaine are
summarized in Table 1. Lidocaine shortened the QT¢ interval,
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IE:ICRB Serial Electrophysiological and Proarrhythmic Properties of Dofetilide Before and After Ranolazine-Lidocaine

Baseline 1 Dofetilide 1 Baseline 2 Ranolazine Dofetilide 2 Baseline 3 Lidocaine Dofetilide 3
R-R interval, ms 1,226 = 148 1,254 + 155 1,574 = 102 1,676 = 74 1,904 + 141 1,499 = 133 1,481 + 129 1,481 = 129
QT interval, ms 412 + 29 577 = 36* 442 + 46 497 + 45 644 + 33tt 425 + 41 360 = 25t 627 + 41t
QTc, ms 392 + 36 555 + 39* 392 + 38 438 = 43 565 + 31t 382 + 34 318 = 20t 586 + 38ttt
LV MAPD, ms 334 = 27 525 *+ 34* 362 = 49 410 = 49 573 = 56t 323 £ 41 281 + 25 522 + 5114
RV MAPD, ms 274 =21 361 + 23* 330 = 24 384 = 24 503 + 41t 270 = 17 247 = 14 352 + 25t
AMAPD, ms 54 +43 147 = 27* 53 = 14 47 = 15 73 =26 53 =29 36 =11 169 * 44t%
LV STV, ms 12 +041 3.1+ 0.6* 1.6 £ 0.3 2.0*+03 3.3*+09 1.4 +0.3 1.2 +0.2 3.1+ 0.4t%t
Single EBs 6+3 62 + 18* 1+04 1+1 84 + 38 1+0.3 0 27 £ 14
Multiple EBs 0 21 + 8* 0 6+3 0 0 2+18§
nr TdPs 0 7 £ 2% 0 2+1§ 0 0 1+18§
TdP incidence 0 6/6 0 4/6 0 0 3/6

There were no significant diff within the b data. *p < 0.05 versus baseline 1; tversus baseline 2 to 3; tversus ranolazine-lidocaine; §versus dofetilide 1.

EB = ectopic beat; LV = left ventricular; AMAPD = interventricular dispersion of repolarization duration; nr TdP = number of torsades de pointes/10 min; QTC = corrected QT interval; STV = short-term

beat-to-beat variability of LV (M)APD to quantify BVR; TdP = torsades de pointes.

but failed to attenuate dofetilide-induced QT interval prolon-
gation, increases in monophasic action potential duration
(MAPD), interventricular dispersion, and STV. As with rano-
lazine, dofetilide-induced TdP episodes occurred less fre-
quently in the presence of lidocaine, but were still observed in
3 of 6 cAVB dogs; multiple EBs were seen in 4 of 6 dogs.
Figure 3 summarizes individual data on STV according to
arrhythmogenic outcome, defined as the occurrence of EBs
or TdP. Effective prevention of arrhythmias either with
lidocaine or ranolazine (n., = 3) was associated with no
change in STV, whereas an increase in STV preceded
proarrhythmia (n.,, = 7).
Late Na* current is reduced in cAVB. The late compo-
nent of the Na™ current was measured as the current sensitive
to 5-umol/l TTX (Fig. 4A, left). The amplitude of the inward
current was significantly reduced in cAVB: —0.08 * 0.01 vs.
-0.173 = 0.03 pA/pF in control cells (p < 0.05) (Fig. 4A,
right). Despite its smaller amplitude, the TTX-sensitive

8 _
- 4 4 + EB/TdP
£
= |
&
2 | -EB/TdP
0 T T T
baseline rano  dofetilide

lido

Relation Between STV and
Ectopic Activity/TdP (EB/TdP)

Individual changes of STV depicted under baseline, ranolazine (squares) or
lidocaine (circles), and after dofetilide. Data are grouped according to ectopic
beats (EBs) and/or TdP (+EB/TdP, closed symbols, n.,, = 7; —EB/TdP, open
symbols, n.,, = 3). Abbreviations as in Figure 1.

current equally contributed to APD in cAVB: 5-umol/l
TTX shortened APDgy, by 29 * 3% in cAVB (n = 9) and
by 28 = 4% in control cells (n = 8, p = NS) (Fig. 4B).

Figure 4C shows the duration of successive APs and STV

during the time course of a typical experiment where
dofetilide was used to induce EADs, which were typically
preceded by AP prolongation and an increase of STV.
Addition of 5-umol/l TTX fully suppressed EADs, and
reversed the dofetilide-induced increase of APD and STV
to baseline values.
Suppression of afterdepolarizations by ranolazine is
concentration-dependent. In cAVB dogs, total ranolazine
concentrations were between 7 and 30 wmol/l. Assuming
that 65% of ranolazine is bound to plasma proteins, the
calculated free drug concentration lies between 5 and 15
pmol/l. These concentrations were used for cellular exper-
iments. The proportion of TTX-sensitive current blocked
by ranolazine in cAVB was 26 = 3% at 5 umol/l (n = 6),
and 49 * 3% at 15 wmol/l (n = 8).

Figure 5A shows typical recordings of action potentials
and dofetilide-induced EADs in a cAVB cell, with, in the
lower panel, changes in APD and STV. Early afterdepolar-
izations were suppressed by 15 pmol/l (n . = 9), although
ranolazine did not shorten APD following dofetilide (p =
0.27), or significantly reduced STV (p = 0.13) (Fig. 5B).
However, values were no longer different from baseline. In
the particular example of Figure 5A, EADs were not
suppressed by ranolazine when applied at 5 umol/l. The
concentration-dependent suppression of EADs by ranola-
zine is summarized in Figure 5C: in 25% of cAVB cells at
5 wmol/l (n = 4), versus 75% at 10 wmol/l (n = 4) and in
100% at 15 umol/l (n = 9).

Discussion

In the cAVB dog model, ranolazine significantly suppressed
and prevented dofetilide-induced TdP arrhythmias. How-
ever, BVR was only slightly reduced, in line with the
observation that proarrhythmic activity was not completely
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abolished. Lidocaine, a specific Na* blocker, had similar
effects. An interesting finding of the present study was that
inhibition of Iy, by TTX fully suppressed dofetilide-
induced EADs in single cells, despite the fact that I, was
down-regulated in cAVB. Ranolazine abolished EADs but
only at higher concentrations. Thus the incomplete antiar-
rhythmic activity of ranolazine in cAVB dogs is not due to I,
block, but more likely to reduced Iy, and concentration-
dependent effects.

Remodeling of Iy, in hypertrophy vs. heart failure. The
cAVB heart develops compensated hypertrophy, and elec-
trical remodeling includes changes in delayed rectifying K™
currents and Na/Ca exchange (27-29). Additionally, in the
present study, we found a decrease of Iy, . This is at odds
with heart failure, where Iy, is up-regulated despite
smaller peak currents (2) and contributes to prolongation
and abnormal repolarization (4). In cAVB, we previously
reported lower messenger ribonucleic acid expression levels
of cardiac Na™ channels together with a reduction of peak
current (30).

Possible mechanisms underlying antiarrhythmic effects
of ranolazine. In vitro, the antiarrhythmic properties of
ranolazine were reported at first in LQTS type 3 (13,14)
and confirmed in failing myocytes with up-regulated Iy,

(15). Hence, the efficacy of ranolazine was ascribed to its
Inar-blocking properties. Interestingly, ranolazine was proven
antiarrhythmic against EADs and TdP caused by mechanisms
other than abnormal Iy, including enhanced Ca®" channel
activity mimicking the LQTS type 8 (16), and through
inhibition of Iy, as a model for the LQTS type 2 (8). Reduced
transmural dispersion as well as a decrease of repolarization
variability were proposed as antiarrhythmic mechanisms
(13,15,16). BVR originates in the plateau phase of the action
potential and I, may indeed contribute to variability (31). In
cAVB, ranolazine attenuated changes in dofetilide-induced
BVR, but only to a limited extent.

Ranolazine prevents excessive Ca®" loading of the cell by
lowering Na™ levels through inhibition of Iy, (32). In
cAVB, Na™ levels are high, which enhances Ca?* loading
(33). The subsequent increase of sarcoplasmic reticulum
Ca®" release may facilitate EADs by promoting inward
Na/Ca exchange current allowing Ca®" window currents to
develop, and more Ca?* channels may be available for
reactivation due to a larger recovery from release-dependent
inactivation (28,34). In addition, high Ca*" loads favor
spontaneous Ca®" release and delayed afterdepolarizations
(27). By reversing the increased Na™ levels, ranolazine may
reduce triggered activity in cAVB.
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STV (lower). Averaged data from 9 cAVB cells (ngogs = 5), *p < 0.05 versus baseline. (C) Proportion of cAVB cells showing EAD suppression at different concentrations
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Limited antiarthythmic potential of Na* channel blockers
in cAVB. Although TdP occurs less, ranolazine did not
completely abolish ectopic activity. At the therapeutic range,
ranolazine blocks Iy, (8). In the remodeled cAVB heart with
reduced repolarization reserve, an additional block of I, could
confound the antiarrhythmic effects of ranolazine through
inhibition of Iy,;. Incomplete antiarrhythmic activity, how-
ever, was also seen with lidocaine. This agent has no inhibitory
effects on Iy, at clinically relevant concentrations and is
considered a selective blocker of Iy, (22). It is therefore
unlikely that the Iy, block contributes to the incomplete
antiarrhythmic potential of ranolazine.

The main target for ranolazine, Iy,;, is decreased and not
increased in the cAVB heart. The block of Iy, by ranolazine
is insufficient to balance the down-regulation of repolarizing

K™ currents (I, [slow component of the delayed rectifying
potassium current], I,) and ranolazine therefore cannot com-
pletely prevent or suppress proarrhythmia. On the other hand,
in conditions with increased Iy, (LQTS type 3, heart failure)
the block of I,;. should be sufficient as documented in LQTS
type 3 (12,14) and/or heart failure (15).

Interestingly, in single cells, 15-umol/l ranolazine fully
suppressed EADs, whereas lower concentrations of
5 wmol/] could not. This concentration-dependent effect
was also observed by others (8). On a background of
down-regulated Iy, , the higher degree of Na™ block might
be required to tip the balance toward strengthened repolar-
ization preventing the development of EADs despite block-
age of Iy, In the intact animal, the concentration of
available ranolazine is likely less and below the critical level



808 Antoons et al.
Antiarrhythmic Effects of Ranolazine

for complete suppression of EADs. Higher plasma concen-
trations such as 20 wmol/l would far exceed the therapeutic
range (2 to 6 umol/l) and could experimentally not be
achieved in the dog.

BVR. BVR is a reliable parameter to predict drug-induced
TdP and is superior to QT interval prolongation. A torsa-
dogenic drug increases BVR, and this is independent of
total duration of repolarization; a drug that does not
increase BVR is considered safe (20). Fewer studies have
addressed the potential of BVR for predicting successful
antiarrhythmic treatment, where one expects a decrease
and/or prevention of BVR increase if the drug is antiar-
thythmic (35). The strong antiarrhythmic activity of the
Ca®* channel antagonist flunarizine, evidenced by complete
inhibition of arrhythmogenic events, is associated with full
reversal of BVR to baseline levels and lack of increase upon
an arrhythmogenic challenge (36) and is in support of this
premise. This finding is unlike the modest effects of Na™
blockers on BVR, which correspond to the inability of the
blockers to fully prevent or suppress EBs and TdP. Proar-
rhythmic outcome was related to an increase of BVR in the
susceptible animal and confirms the value of BVR as a
marker of proarrhythmic risk. BVR was reflected already in
ectopic beat formation (Fig. 3). In the noninducible ani-
mals, there was no change of BVR.

Clinical implications. The observation that ranolazine did
not produce any proarrhythmic effects, rather was antiar-
rhythmic against dofetilide-induced TdP and EADs, fur-
ther substantiates that ranolazine is a safe drug despite
Ik,~blocking properties. The concentration at which maxi-
mal antiarrthythmic effects were seen in the setting of
reduced Iy,;, in the cAVB model (15 wmol/l) was approx-
imately 1.5 to 3 times higher than the clinical therapeutic
concentrations. Yet, antiarrhythmic efficacy at therapeutic
concentrations has been documented in the MERLIN-
TIMI 36 (Metabolic Efficiency with Ranolazine for Less
Ischemia in Non-ST-Elevation Acute Coronary Syndromes—
Thrombolysis In Myocardial Infarction 36) trial (18).

Conclusions

The antiarrhythmic properties of ranolazine are most obvi-
ous under conditions of abnormal and increased Iy,
including LQT'S type 3. Albeit with less efficacy, ranolazine
and other Na™ blockers are also antiarrhythmic against
EADs and TdP in cAVB dogs with acquired LQTS,
despite down-regulation of Iy, due to remodeling. Anti-
arrhythmic effects were reflected in BVR, in single myocytes
as well as in the intact animal.
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