20 research outputs found

    HIV Treatment Outcome Disparities: Using Web-based Technology to Promote Adherence and Engagement with Care among African American Patients

    Full text link
    Ethnic minorities continue to be disproportionately affected by the HIV epidemic and those individuals living with the virus experience differential outcomes in treatment. Technology-based approaches have been used to address a variety of health problems, but few studies have focused on the application of these approaches in addressing HIV treatment disparities. Using a sample of African-American patients identified as lost to follow-up for HIV treatment (n=33), this study examined the feasibility and acceptability of a web-based program designed to assess and improve treatment engagement. Participants were randomly assigned to either the web-based assessment program or the control group. Measures of behavior change intentions and motivation were administered to all participants. Assessment group participants completed additional measures to determine personal reactions and perceived credibility related to the web-based program. Findings indicated that assessment group participants reported significantly higher behavior change intentions than those in the control group. In addition, assessment group participants viewed the program favorably and rated it highly as a credible approach to improve their adherence and engagement with care. Findings from this pilot study indicate that the web-based program is feasible and acceptable as a clinical tool to improve engagement among African American patients with HIV

    Mudança organizacional: uma abordagem preliminar

    Full text link

    Quantitative Proteomics of Seed Filling in Castor: Comparison with Soybean and Rapeseed Reveals Differences between Photosynthetic and Nonphotosynthetic Seed Metabolism1[C][W][OA]

    No full text
    Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds

    Phylogenetic Analyses Identify 10 Classes of the Protein Disulfide Isomerase Family in Plants, Including Single-Domain Protein Disulfide Isomerase-Related Proteins

    No full text
    Protein disulfide isomerases (PDIs) are molecular chaperones that contain thioredoxin (TRX) domains and aid in the formation of proper disulfide bonds during protein folding. To identify plant PDI-like (PDIL) proteins, a genome-wide search of Arabidopsis (Arabidopsis thaliana) was carried out to produce a comprehensive list of 104 genes encoding proteins with TRX domains. Phylogenetic analysis was conducted for these sequences using Bayesian and maximum-likelihood methods. The resulting phylogenetic tree showed that evolutionary relationships of TRX domains alone were correlated with conserved enzymatic activities. From this tree, we identified a set of 22 PDIL proteins that constitute a well-supported clade containing orthologs of known PDIs. Using the Arabidopsis PDIL sequences in iterative BLAST searches of public and proprietary sequence databases, we further identified orthologous sets of 19 PDIL sequences in rice (Oryza sativa) and 22 PDIL sequences in maize (Zea mays), and resolved the PDIL phylogeny into 10 groups. Five groups (I–V) had two TRX domains and showed structural similarities to the PDIL proteins in other higher eukaryotes. The remaining five groups had a single TRX domain. Two of these (quiescin-sulfhydryl oxidase-like and adenosine 5′-phosphosulfate reductase-like) had putative nonisomerase enzymatic activities encoded by an additional domain. Two others (VI and VIII) resembled small single-domain PDIs from Giardia lamblia, a basal eukaryote, and from yeast. Mining of maize expressed sequence tag and RNA-profiling databases indicated that members of all of the single-domain PDIL groups were expressed throughout the plant. The group VI maize PDIL ZmPDIL5-1 accumulated during endoplasmic reticulum stress but was not found within the intracellular membrane fractions and may represent a new member of the molecular chaperone complement in the cell

    Can Mass Spectrometry Analysis of In Vitro Digestion Products Improve the Assessment of Allergenic Potential of a Newly Expressed Protein?

    No full text
    The rigorous safety assessment conducted on genetically modified crops includes an evaluation of allergenic potential for an associated newly expressed protein (NEP). Since no single method is recognized as a predictor for protein allergenicity, a weight of evidence approach (WOE) has been adopted. In vitro digestion is a part of the WOE approach and is used to evaluate the susceptibility of a NEP to digestion by gastrointestinal proteases. In 2017, the European Food Safety Authority outlined additional digestion conditions and suggested liquid chromatography tandem mass spectrometry (LC-MS/MS) as an analytical method to detect small post-digestion peptides. This technical review paper focuses on the question of whether LC-MS/MS can aid in assessing allergenic potential of in vitro digestion products generated under the newly proposed conditions. After an extensive review, it was determined that LC-MS/MS can detect very small digestion products. However, the method cannot provide relevant information to differentiate whether these products are allergenic or non-allergenic. Therefore, the use of LC-MS/MS for a standard in vitro digestibility assessment provides no improvement in allergenicity prediction. doi: 10.21423/jrs-v09i1wan

    The Absence of Heat Shock Protein HSP101 Affects the Proteome of Mature and Germinating Maize Embryos

    No full text
    Maize heat shock protein HSP101 accumulates during embryo maturation and desiccation and persists at high levels during the first 24 h following kernel imbibition in the absence of heat stress. This protein has a known function in disaggregation of high molecular weight complexes and has been proposed to be a translational regulator of specific mRNAs. Here, a global proteomic approach was used to identify changes in the maize proteome due to the absence of HSP101 in embryos from mature-dry or 24 h-imbibed kernels. A total of 26 protein spots from the mature dry embryo exhibited statistically significant expression changes in the L10 inbred <i>hsp101</i> mutant (<i>hsp101-m5::Mu1</i>/<i>hsp101-m5::Mu1</i>) line as compared to the corresponding wild type (<i>Hsp101</i>/<i>Hsp101</i>). Additional six spots reproducibly showed qualitative changes between the mutant and wild-type mature and germinating embryos. Several chaperones, translation-related proteins, actin, and enzymes participating in cytokinin metabolism were identified in these spots by tandem mass-spectrometry (MS). The proteomic changes partially explain the altered root growth and architecture observed in young <i>hsp101</i> mutant seedlings. In addition, specific protein de novo synthesis was altered in the 24 h-imbibed mutant embryos indicating that maize HSP101 functions as both chaperone and translational regulator during germination. Supporting this, HSP101 was found as part of Cap-binding and translation initiation complexes during early kernel imbibition. Overall, these findings expose the relevance of maize HSP101 for protein synthesis and balance mechanisms during germination

    The Absence of Heat Shock Protein HSP101 Affects the Proteome of Mature and Germinating Maize Embryos

    No full text
    Maize heat shock protein HSP101 accumulates during embryo maturation and desiccation and persists at high levels during the first 24 h following kernel imbibition in the absence of heat stress. This protein has a known function in disaggregation of high molecular weight complexes and has been proposed to be a translational regulator of specific mRNAs. Here, a global proteomic approach was used to identify changes in the maize proteome due to the absence of HSP101 in embryos from mature-dry or 24 h-imbibed kernels. A total of 26 protein spots from the mature dry embryo exhibited statistically significant expression changes in the L10 inbred <i>hsp101</i> mutant (<i>hsp101-m5::Mu1</i>/<i>hsp101-m5::Mu1</i>) line as compared to the corresponding wild type (<i>Hsp101</i>/<i>Hsp101</i>). Additional six spots reproducibly showed qualitative changes between the mutant and wild-type mature and germinating embryos. Several chaperones, translation-related proteins, actin, and enzymes participating in cytokinin metabolism were identified in these spots by tandem mass-spectrometry (MS). The proteomic changes partially explain the altered root growth and architecture observed in young <i>hsp101</i> mutant seedlings. In addition, specific protein de novo synthesis was altered in the 24 h-imbibed mutant embryos indicating that maize HSP101 functions as both chaperone and translational regulator during germination. Supporting this, HSP101 was found as part of Cap-binding and translation initiation complexes during early kernel imbibition. Overall, these findings expose the relevance of maize HSP101 for protein synthesis and balance mechanisms during germination

    The Absence of Heat Shock Protein HSP101 Affects the Proteome of Mature and Germinating Maize Embryos

    No full text
    Maize heat shock protein HSP101 accumulates during embryo maturation and desiccation and persists at high levels during the first 24 h following kernel imbibition in the absence of heat stress. This protein has a known function in disaggregation of high molecular weight complexes and has been proposed to be a translational regulator of specific mRNAs. Here, a global proteomic approach was used to identify changes in the maize proteome due to the absence of HSP101 in embryos from mature-dry or 24 h-imbibed kernels. A total of 26 protein spots from the mature dry embryo exhibited statistically significant expression changes in the L10 inbred <i>hsp101</i> mutant (<i>hsp101-m5::Mu1</i>/<i>hsp101-m5::Mu1</i>) line as compared to the corresponding wild type (<i>Hsp101</i>/<i>Hsp101</i>). Additional six spots reproducibly showed qualitative changes between the mutant and wild-type mature and germinating embryos. Several chaperones, translation-related proteins, actin, and enzymes participating in cytokinin metabolism were identified in these spots by tandem mass-spectrometry (MS). The proteomic changes partially explain the altered root growth and architecture observed in young <i>hsp101</i> mutant seedlings. In addition, specific protein de novo synthesis was altered in the 24 h-imbibed mutant embryos indicating that maize HSP101 functions as both chaperone and translational regulator during germination. Supporting this, HSP101 was found as part of Cap-binding and translation initiation complexes during early kernel imbibition. Overall, these findings expose the relevance of maize HSP101 for protein synthesis and balance mechanisms during germination
    corecore