5 research outputs found

    Antifungal activity of Bacillussp. Gn-A11-18isolated from decomposing solid green household waste in water and soil against Candida albicans and Aspergillus niger

    No full text
    Candida albicans an opportunistic pathogenic fungus causes many infections in humans. Whereas Aspergillus niger is a fungus that can produce ochratoxins, a group of extremely dangerous secondary metabolites that are classified as potentially carcinogenic to humans and also causing deterioration in grapes, strawberries, etc. The purpose of the current study is to isolate, purify, identify and characterize new microorganisms associated with solid green household waste for the control of C. albicans and A. niger. The antifungal activity of bacterial isolates was carried out in vitro by the agar plug diffusion method, the disk and well diffusion method. The isolate that showed promising activity has been identified by those macroscopic, microscopic and biochemical characteristics. The results obtained in the course of this study showed the isolation of an isolate named Gn-A11-18, which was shown to have significant inhibitory activity with a 42.66% inhibition percentage against A. niger and a 44.66 mm inhibition diameter against C. albicans compared to the controls. The identification of Gn-A11-18 isolate has shown that this isolate belongs to the genus Bacillus with a similarity to Bacillus subtilis and Bacillus tequilensis. In the light of the results of this study, we can suggest that the bioactive compound of Bacillus sp. Gn-A11-18 could become a biological alternate that could have an important role to fight against C. albicans and A. niger

    Occurrence and geographic distribution of plant-parasitic nematodes associated with citrus in Morocco and their interaction with soil patterns

    Get PDF
    Plant-parasitic nematodes (PPNs) are found in citrus plantations throughout the world, but they are considered to be the most problematic pest in Morocco. Citrus fruit quality and yield have been adversely affected by PPNs. Due to data unavailability of nematodes associated with citrus, a detailed survey was conducted in the main citrus-growing regions of Morocco during 2020–2021 to assess the occurrence, distribution, and diversity of PPNs associated with rhizospheres of citrus trees. In addition, some soil properties have also been assessed for their impact on soil properties. Plant-parasitic nematode diversity was calculated using two ecological indexes, the Shannon diversity index (H′) and the Evenness index (E). The collected soil and root samples were analyzed, and eleven genera and ten species of plant-parasitic nematodes were identified. The results show that the most predominant PPN species were Tylenchulus semipenetrans (88%), Helicotylenchus spp. (75%), Pratylenchus spp. (47%), Tylenchus spp. (51%), and Xiphinema spp. (31%). The results showed that PPN distributions were correlated with soil physicochemical properties such as soil texture, pH levels, and mineral content. Based on the obtained result, it was concluded that besides the direct effects of the host plant, physicochemical factors of the soil could greatly affect PPN communities in citrus growing orchards

    Occurrence and Geographic Distribution of Plant-Parasitic Nematodes Associated with Citrus in Morocco and Their Interaction with Soil Patterns

    Get PDF
    Plant-parasitic nematodes (PPNs) are found in citrus plantations throughout the world, but they are considered to be the most problematic pest in Morocco. Citrus fruit quality and yield have been adversely affected by PPNs. Due to data unavailability of nematodes associated with citrus, a detailed survey was conducted in the main citrus-growing regions of Morocco during 2020–2021 to assess the occurrence, distribution, and diversity of PPNs associated with rhizospheres of citrus trees. In addition, some soil properties have also been assessed for their impact on soil properties. Plant-parasitic nematode diversity was calculated using two ecological indexes, the Shannon diversity index (H′) and the Evenness index (E). The collected soil and root samples were analyzed, and eleven genera and ten species of plant-parasitic nematodes were identified. The results show that the most predominant PPN species were Tylenchulus semipenetrans (88%), Helicotylenchus spp. (75%), Pratylenchus spp. (47%), Tylenchus spp. (51%), and Xiphinema spp. (31%). The results showed that PPN distributions were correlated with soil physicochemical properties such as soil texture, pH levels, and mineral content. Based on the obtained result, it was concluded that besides the direct effects of the host plant, physicochemical factors of the soil could greatly affect PPN communities in citrus growing orchards
    corecore