273 research outputs found

    A method for calibration of the Hyperplastic Accelerated Ratcheting Model (HARM)

    Get PDF
    This paper presents an analytical methodology for calibration of the Hyperplastic Accelerated Ratcheting Model (HARM) [3], based on a closed-form expression for the accumulation of ratcheting strain with cyclic history. The proposed method requires the fit of one test response and of a few continuous cyclic tests. The initial motivation for this work is the calibration of models for the design of piles subjected to long-term cyclic lateral loading, and the test results from Abadie, Byrne [1], [2] are used for calibration and proofing of the model. Nevertheless, the method is applicable to other problems of similar behaviour

    Rigid pile response to cyclic lateral loading: Laboratory tests

    Get PDF
    This paper presents experimental work aimed at improving understanding of the behaviour of rigid monopiles, in cohesionless soils, subjected to lateral cyclic loading. It involves 1g laboratory model tests, scaled to represent monopile foundations for offshore wind turbines. The test programme is designed to identify the key mechanisms governing pile response, and is divided into four main parts: (a) investigation of loading rate effects; (b) hysteretic behaviour during unloading and reloading; (c) pile response due to long-term single-amplitude cyclic loading; and (d) multi-amplitude cyclic loads. The results show that the pile response conforms closely to the extended Masing rules, with additional permanent deformation accumulated during non-symmetric cyclic loads. This ratcheting behaviour is characterised by two features: first, the ratcheting rate decreases with cycle number and depends on the cyclic load magnitude, and second, the shape of the hysteresis loop tightens progressively, involving increased secant stiffness and decreased loop area. Test results involving multi-amplitude load scenarios demonstrate that the response of the pile to complex load scenarios can be analysed and understood using the conclusions from single-amplitude cyclic loading. Such test results should be sufficient for deriving the principles of new modelling approaches. </jats:p

    PISA design methods for offshore wind turbine monopiles

    Get PDF
    Abstract This paper provides an overview of the PISA design model recently developed for laterally loaded offshore wind turbine monopiles through a major European joint-industry academic research project, the PISA Project. The focus was on large diameter, relatively rigid piles, with low length to diameter (L/D) ratios, embedded in clay soils of different strength characteristics, sand soils of different densities and in layered soils combining clays and sands. The resulting design model introduces new procedures for site specific calibration of soil reaction curves that can be applied within a one-dimensional (1D), Winkler-type, computational model. This paper summarises the results and key conclusions from PISA, including design methods for (a) stiff glacial clay till (Cowden till), (b) brittle stiff plastic clay (London clay), (c) soft clay (Bothkennar clay), (d) sand of varying densities (Dunkirk), and, (e) layered profiles (combining soils from (a) to (d)). The results indicate that the homogeneous soil reaction curves applied appropriately for layered profiles in the 1D PISA design model provide a very good fit to the three-dimensional finite element (3D FE) calculations, particularly for profiles relevant to current European offshore wind farm sites. Only a small number of cases, involving soft clay, very dense sand and L/D = 2 monopiles, would appear to require more detailed and bespoke analysis.</jats:p

    Application of the PISA design model to monopiles embedded in layered soils

    Get PDF
    The PISA design model is a procedure for the analysis of monopile foundations for offshore wind turbine applications. This design model has been previously calibrated for homogeneous soils; this paper extends the modelling approach to the analysis of monopiles installed at sites where the soil profile is layered. The paper describes a computational study on monopiles embedded in layered soil configurations comprising selected combinations of soft and stiff clay and sand at a range of relative densities. The study comprises (a) analyses of monopile behaviour using detailed three-dimensional (3D) finite-element analysis, and (b) calculations employing the PISA design model. Results from the 3D analyses are used to explore the various influences that soil layering has on the performance of the monopile. The fidelity of the PISA design model is assessed by comparisons with data obtained from equivalent 3D finite-element analyses, demonstrating a good agreement in most cases. This comparative study demonstrates that the PISA design model can be applied successfully to layered soil configurations, except in certain cases involving combinations of very soft clay and very dense sand. </jats:p

    PISA design model for monopiles for offshore wind turbines: Application to a marine sand

    Get PDF
    This paper describes a one-dimensional (1D) computational model for the analysis and design of laterally loaded monopile foundations for offshore wind turbine applications. The model represents the monopile as an embedded beam and specially formulated functions, referred to as soil reaction curves, are employed to represent the various components of soil reaction that are assumed to act on the pile. This design model was an outcome of a recently completed joint industry research project – known as PISA – on the development of new procedures for the design of monopile foundations for offshore wind applications. The overall framework of the model, and an application to a stiff glacial clay till soil, is described in a companion paper by Byrne and co-workers; the current paper describes an alternative formulation that has been developed for soil reaction curves that are applicable to monopiles installed at offshore homogeneous sand sites, for drained loading. The 1D model is calibrated using data from a set of three-dimensional finite-element analyses, conducted over a calibration space comprising pile geometries, loading configurations and soil relative densities that span typical design values. The performance of the model is demonstrated by the analysis of example design cases. The current form of the model is applicable to homogeneous soil and monotonic loading, although extensions to soil layering and cyclic loading are possible. </jats:p

    Ground characterisation for PISA pile testing and analysis

    Get PDF
    This paper is the first of a set of linked publications on the PISA Joint Industry Research Project, which was concerned with the development of improved design methods for monopile foundations in offshore wind applications. PISA involved large-scale pile tests in overconsolidated glacial till at Cowden, north-east England, and in dense, normally consolidated marine sand at Dunkirk, northern France. The paper presents the characterisation of the two sites, which was crucial to the design of the field experiments and advanced numerical modelling of the pile–soil interactions. The studies described, which had to be completed at an early stage of the PISA project, added new laboratory and field campaigns to historic investigations at both sites. They enabled an accurate description of soil behaviour from small strains to ultimate states to be derived, allowing analyses to be undertaken that captured both the serviceability and limit state behaviour of the test monopiles
    • …
    corecore