15 research outputs found

    THE INFLUENCE OF THE [LI]/[NB] RATIO ON THE HOLOGRAPHIC STORAGE PERFORMANCE OF MGFECULINBO3 CRYSTALS

    No full text
    Four groups of Mg:Fe:Cu:LiNbO₃ crystals with different [Li]/[Nb] ratios were prepared using the Czochralski method. The crystals were tested using infrared absorption spectroscopy (IR) to analyze ion occupation, and their optical birefringence performance was tested through two-wave coupling experiments. The crystals' resistance to optical damage was tested using the exposure energy flux threshold method. The results showed that when the [Li]/[Nb] ratio exceeded 1.20, the doped ions began to enter the Nb site. As the [Li]/[Nb] ratio increased, the optical birefringence performance and resistance to optical damage of the crystals gradually improved. When the [Li]/[Nb] ratio was 1.38, aside from an increase in grating erasure time, the writing speed, diffraction efficiency, sensitivity, dynamic range, and photoconductivity were all optimal. At this ratio, the Mg:Fe:Cu:LiNbO₃ crystal exhibited the best holographic storage performance

    Analytical Study of Soil Displacement Induced by Twin Shield Tunneling in Semi-Infinite Viscoelastic Ground

    No full text
    Effective measures are needed to strictly control soil displacement caused during the process of shield construction excavation for urban subway tunnels. When calculating the displacement of soil caused by loading or unloading, many previous analytical studies have assumed that the soil was a linear elastic body and ignored the viscosity of the soil. In this study, the Boltzmann viscoelastic model and the Mindlin basic solution were combined to consider the effects of the additional support pressures, the shield shell frictions, the grouting pressures, and the ground loss, and a three-dimensional viscoelastic solution for soil displacement caused by shield tunneling was derived. According to the calculation results of an example, the analytical solution was able to consider the asynchronous construction of the left and right tunnels and the mutual influence of the double shield tunnel. The rationality of the approach proposed in this study was verified by comparing the theoretical solution with the measured settlement values. In addition, the influence of differences in the viscoelastic parameters (the viscosity coefficient, the shear modulus of the elastic element, and the shear modulus of the viscous element) and the geometric parameters (the distance from the excavation surface, the calculated depth, and tunnel spacing) on soil displacement is discussed. The calculation method in this study provides a theoretical basis for predicting the three-dimensional soil deformation caused by shield tunneling, especially in soft clays

    The Ground Settlement and the Existing Pipeline Response Induced by the Nonsynchronous Construction of a Twin-Tunnel

    No full text
    Shielding tunnel construction always has negative impacts on the surrounding buildings. Because of repeated disturbances caused by the construction, more attention should be paid to the impacts of the nonsynchronous construction of a twin-tunnel. In this research, a three-dimensional model was established to simulate the construction process of a twin-tunnel in a section of the Hefei No. 4 metro line, and the calculation results were validated with the measured settlement data. Based on the model, the ground settlement and the existing pipeline responses were studied in detail. The results showed that, after the first tunnel (FT) construction, the settlement curves conformed to a Gaussian distribution. Additionally, after the second tunnel (ST) construction, the final settlement curves were no longer completely symmetrical. The influences of the twin-tunnel space and the pipeline-soil relative stiffness on the settlements were further studied. The results showed that the final settlement curves of the ground surface and the pipeline were mainly W-shaped, U-shaped, and V-shaped. As the twin-tunnel space increased and the pipeline-soil relative stiffness decreased, the settlement curve gradually changed from V-shaped to W-shaped. C was defined as the ratio of two maximum settlements in the W-shaped settlement curve. As the space increased, C started to decrease from 1 and then increased to 1

    Influence of Pipeline Leakage on the Ground Settlement around the Tunnel during Shield Tunneling

    No full text
    Shield tunneling is widely used in urban subway tunnel construction. Old urban underground pipelines generally have small leakages that are difficult to find. The water leakage significantly reduces the stability of the stratum, posing a threat to the safety of tunnel shield construction. Therefore, this study established 2D and 3D calculation models for analyzing the law of the leakage diffusion in the ground under water pressure, and the influences of the pipeline leakage range and leakage length on the changes in ground settlement during shield tunneling. The 2D model calculation results show that seepage water mainly diffuses vertically under gravity. As the pipeline leakage gradually reaches a predetermined depth, the simulation results tend to be consistent with the test results. The 3D model is more accurate than the theoretical solution in predicting the ground settlement because it can consider the influences of repeated disturbances in twin tunnel shield construction. The maximum ground surface settlement increases with the extent of the leakage length and leakage range, and the range is the main factor determining the settlement. At the interior of the ground, the seepage water has a greater impact on areas with strong disturbances and large soil losses

    Influence of Pipeline Leakage on the Ground Settlement around the Tunnel during Shield Tunneling

    No full text
    Shield tunneling is widely used in urban subway tunnel construction. Old urban underground pipelines generally have small leakages that are difficult to find. The water leakage significantly reduces the stability of the stratum, posing a threat to the safety of tunnel shield construction. Therefore, this study established 2D and 3D calculation models for analyzing the law of the leakage diffusion in the ground under water pressure, and the influences of the pipeline leakage range and leakage length on the changes in ground settlement during shield tunneling. The 2D model calculation results show that seepage water mainly diffuses vertically under gravity. As the pipeline leakage gradually reaches a predetermined depth, the simulation results tend to be consistent with the test results. The 3D model is more accurate than the theoretical solution in predicting the ground settlement because it can consider the influences of repeated disturbances in twin tunnel shield construction. The maximum ground surface settlement increases with the extent of the leakage length and leakage range, and the range is the main factor determining the settlement. At the interior of the ground, the seepage water has a greater impact on areas with strong disturbances and large soil losses

    Response Mechanism of Cotton Growth to Water and Nutrients under Drip Irrigation with Plastic Mulch in Southern Xinjiang

    No full text
    The effects of water and nutrient control measures on the cotton plant height, stem diameter, biomass, seed yield, and soil moisture under an irrigated plastic mulch production system were studied. Using field experiments in the 2018 cotton-growing season, 6 fertilization treatments (30-10.5-4.5 (N-P2O5-K2O), 24-8.4-3.6 (N-P2O5-K2O), 20-7-3 (N-P2O5-K2O), 16-5.6-2.4 (N-P2O5-K2O), 10-3.5-1.5 (N-P2O5-K2O), and 0-0-0 (N-P2O5-K2O) kg/mu) and 6 deficit irrigation treatments (40% PET, 60% PET, and 80% PET) were established at the cotton budding and flowering stages. Analysis of variance (ANOVA) (P<0.05) was used to evaluate the significant differences among the treatments. The results showed that the effects of the water and nutrient control measures were obvious. The irrigation water use efficiency (IWUE) was the highest under the 80% deficit irrigation (T7) treatment at the flowering stage (2.62 kg/m3). Increases in cotton plant height and stem diameter were promoted by mild or moderate deficit irrigation at the flowering stage, but normal growth and development were affected by severe deficit irrigation at any growth stage. The growth indexes of cotton increased with increasing fertilization, but significant differences between each fertilization gradient were not obvious. At the same time, excessive fertilization not only had a positive effect on the LAI (leaf area index) and yield but also caused fertilizer waste and unnecessary cotton growth. The cotton seed yield and single boll yield reached their highest values (566 kg/mu) under the 1.2 times fertilizer treatment (T9), but the 0.8 times fertilizer treatment had the highest IWUE among the nutrient control treatments (1.91 kg/m3). Therefore, it is suggested that deficit irrigation at 60~80% of the potential evapotranspiration (PET) at the flowering stage and 16-5.6-2.4 (N-P2O5-K2O) fertilizer be applied as an optimal water and nutrient management strategy to maximize the seed cotton yield, IWUE, and overall growth and development of cotton

    Single-Atom Iron Catalyst Based on Functionalized Mesophase Pitch Exhibiting Efficient Oxygen Reduction Reaction Activity

    No full text
    Designing highly efficient and low-cost electrocatalysts is of great importance in the fields of energy conversion and storage. We report on the facile synthesis of a single atom (SA) iron catalyst via the pyrolysis of a functionalized mesophase pitch. Monomers of naphthalene and indole underwent polymerization in the presence of iron chloride, which afterwards served as the pore-forming agent and iron source for the resulting catalyst. The SA-Fe@NC catalyst has a well-defined atomic dispersion of iron atoms coordinated by N-ligands in the porous carbon matrix, exhibiting excellent oxygen reduction reaction (ORR) activity (E1/2 = 0.89 V) that outperforms the commercial Pt/C catalyst (E1/2 = 0.84 V). Moreover, it shows better long-term stability than the Pt/C catalyst in alkaline media. This facile strategy could be employed in versatile fossil feedstock and develop promising non-platinum group metal ORR catalysts for fuel cell technologies

    Image1_Prognostic value of glucose to lymphocyte ratio for patients with renal cell carcinoma undergoing laparoscopic nephrectomy: A multi-institutional, propensity score matching cohort study.jpeg

    No full text
    BackgroundWe evaluated the prognostic value of preoperative blood glucose to lymphocyte ratio (GLR) in renal cell carcinoma (RCC) patients who underwent laparoscopic nephrectomy through a multi-institutional clinical study.MethodsA total of 420 patients with RCC from three medical centers from 2014 to 2019 were included in this study. The effect of GLR on overall survival (OS) and cancer-specific survival (CSS) in RCC patients was assessed by Kaplan-Meier survival curves, univariate and multivariate Cox regression analysis. Moreover, a 1:1 propensity score matching (PSM) analysis of different GLR groups was utilized to further confirm the prognostic ability of GLR.ResultsThe optimal cut-off value for GLR was 6.8. Patients were divided into high GLR and low GLR groups according to the optimal cut-off value. GLR was significant association with diabetes, cardiovascular disease and AJCC stage. High GLR predicted adverse OS (P = 0.002) and CSS (P ConclusionsHigh GLR is associated with adverse prognosis in RCC patients, and GLR can serve as an independent prognostic marker for OS and CSS in RCC patients receiving laparoscopic nephrectomy.</p
    corecore