385 research outputs found
Local analogues of high-redshift star-forming galaxies: integral field spectroscopy of green peas
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We use integral field spectroscopy, from the SWIFT and Palm3K instruments, to perform a spatially-resolved spectroscopic analysis of four nearby highly star-forming `green pea' (GP) galaxies, that are likely analogues of star-forming systems at z~2.5-3. By studying emission-line maps in H, [NII]6548,6584 and [SII]6716,6731, we explore the kinematic morphology of these systems and constrain properties such as gas-phase metallicities, electron densities and gas-ionization mechanisms. Two of our GPs are rotationally-supported while the others are dispersion-dominated systems. The rotationally-supported galaxies both show evidence for recent or ongoing mergers. However, given that these systems have intact disks, these interactions are likely to have low mass ratios (i.e. minor mergers), suggesting that the minor-merger process may be partly responsible for the high SFRs seen in these GPs. Nevertheless, the fact that the other two GPs appear morphologically undisturbed suggests that mergers (including minor mergers) are not necessary for driving the high star formation rates in such galaxies. We show that the GPs are metal-poor systems (25-40 per cent of solar) and that the gas ionization is not driven by AGN in any of our systems, indicating that AGN activity is not co-eval with star formation in these starbursting galaxies.Peer reviewedFinal Published versio
Distribution of slow and fast rotators in the Fornax cluster
We present integral field spectroscopy of 10 early-type galaxies in the nearby, low-mass, Fornax cluster, from which we derive spatially resolved stellar kinematics. Based on the morphologies of their stellar velocity maps we classify 2/10 galaxies as slow rotators, with the remaining eight galaxies fast rotators. Supplementing our integral field observations with morphological and kinematic data from the literature, we analyse the ‘kinematic’ type of all 30 galaxies in the Fornax cluster brighter than MK = −21.5 mag (M* ∼ 6 × 109 M⊙). Our sample's slow rotator fraction within one virial radius is 7+4−6 per cent. 13+8−6 per cent of the early-type galaxies are slow rotators, consistent with the observed fraction in other galaxy aggregates. The fraction of slow rotators in Fornax varies with cluster-centric radius, rising to 16+11−8 per cent of all kinematic types within the central 0.2 virial radii, from 0 per cent in the cluster outskirts. We find that, even in mass-matched samples of slow and fast rotators, slow rotators are found preferentially at higher projected environmental density than fast rotators. This demonstrates that dynamical friction alone cannot be responsible for the differing distributions of slow and fast rotators. For dynamical friction to play a significant role, slow rotators must reside in higher mass sub-haloes than fast rotators and/or form in the centres of groups before being accreted on to the cluster
On the distribution of galaxy ellipticity in clusters
We study the distribution of projected ellipticity n(ϵ) for galaxies in a sample of 20 rich (Richness ≥ 2) nearby (z 0.4), therefore it is not a consequence of the increasing fraction of round slow rotator galaxies near cluster centers. Furthermore, the ϵ-R relation persists for just smooth flattened galaxies and for galaxies with de Vaucouleurs-like light profiles, suggesting that the variation of the spiral fraction with radius is not the underlying cause of the trend. We interpret our findings in light of the classification of early type galaxies (ETGs) as fast and slow rotators. We conclude that the observed trend of decreasing ϵ towards the centres of clusters is evidence for physical effects in clusters causing fast rotator ETGs to have a lower average intrinsic ellipticity near the centres of rich clusters
On the distribution of galaxy ellipticity in clusters
open4We study the distribution of projected ellipticity n(ε) for galaxies in a sample of 20 rich (Richness ≥ 2) nearby (z 0.4), therefore it is not a consequence of the increasing fraction of round slow rotator galaxies near cluster centers. Furthermore, the ε-R relation persists for just smooth flattened galaxies and for galaxies with deVaucouleurs-like light profiles, suggesting that the variation of the spiral fractionwith radius is not the underlying cause of the trend. We interpret our findings in light of the classification of early type galaxies (ETGs) as fast and slow rotators. We conclude that the observed trend of decreasing ε towards the centres of clusters is evidence for physical effects in clusters causing fast rotator ETGs to have a lower average intrinsic ellipticity near the centres of rich clusters.openD'Eugenio F.; Houghton R.C.W.; Davies R.L.; Dalla Bonta' E.D'Eugenio, F.; Houghton, R. C. W.; Davies, R. L.; Dalla Bonta', E
A photometric analysis of Abell 1689: two-dimensional multistructure decomposition, morphological classification and the Fundamental Plane
We present a photometric analysis of 65 galaxies in the rich cluster Abell 1689 at z = 0.183, using the Hubble Space Telescope Advanced Camera for Surveys archive images in the rest-frame V band. We perform two-dimensional multicomponent photometric decomposition of each galaxy adopting different models of the surface-brightness distribution. We present an accurate morphological classification for each of the sample galaxies. For 50 early-type galaxies, we fit both a de Vaucouleurs law and a Sérsic law; S0s are modelled by also including a disc component described by an exponential law. Bars of SB0s are described by the profile of a Ferrers ellipsoid. For the 15 spirals, we model a Sérsic bulge, exponential disc and, when required, a Ferrers bar component. We derive the Fundamental Plane (FP) by fitting 40 early-type galaxies in the sample, using different surface-brightness distributions. We find that the tightest plane is that derived by Sérsic bulges. We find that bulges of spirals lie on the same relation. The FP is better defined by the bulges alone rather than the entire galaxies. Comparison with local samples shows both an offset and rotation in the FP of Abell 1689.EDB was supported by grants 60A02-5857/13, 60A02-5833/14,
60A02-4434/15 and CPDA133894 of Padua University. JM-A
thanks support from the MINECO through the grant AYA2013-
43188-P. RCWH was supported by the Science and Technology Facilities Council (STFC grant numbers ST/H002456/1,
ST/K00106X/1 and ST/J002216/1)
The SAMI pilot survey: The kinematic morphology-density relation in Abell 85, Abell 168 and Abell 2399
We examine the kinematic morphology of early-type galaxies (ETGs) in three galaxy clusters Abell 85, 168 and 2399. Using data from the Sydney-AAOMulti-object Integral field spectrograph we measure spatially resolved kinematics for 79 ETGs in these clusters. We calculate λR, a proxy for the projected specific stellar angular momentum, for each galaxy and classify the 79 ETGs in our samples as fast or slow rotators. We calculate the fraction of slow rotators in the ETG populations (fSR) of the clusters to be 0.21 ± 0.08, 0.08 ± 0.08 and 0.12 ± 0.06 for Abell 85, 168 and 2399, respectively, with an overall fraction of 0.15 ± 0.04. These numbers are broadly consistent with the values found in the literature, confirming recent work asserting that the fraction of slow rotators in the ETG population is constant across many orders of magnitude in global environment. We examine the distribution of kinematic classes in each cluster as a function of environment using the projected density of galaxies: the kinematic morphology-density relation.We find that in Abell 85 fSR increases in higher density regions but in Abell 168 and 2399 this trend is not seen. We examine the differences between the individual clusters to explain this. In addition, we find slow rotators on the outskirts of two of the clusters studied, Abell 85 and 2399. These galaxies reside in intermediate to low density regions and have clearly not formed at the centre of a cluster environment. We hypothesize that they formed at the centres of groups and are falling into the clusters for the first time
The SAMI Pilot Survey: stellar kinematics of galaxies in Abell 85, 168 and 2399
We present the SAMI Pilot Survey, consisting of integral field spectroscopy of 106 galaxies across three galaxy clusters, Abell 85, Abell 168 and Abell 2399. The galaxies were selected by absolute magnitude to have Mr < -20.25 mag. The survey, using the Sydney-AAO Multi-object Integral field spectrograph (SAMI), comprises observations of galaxies of all morphological types with 75 per cent of the sample being early-type galaxies (ETGs) and 25 per cent being late-type galaxies (LTGs). Stellar velocity and velocity dispersion maps are derived for all 106 galaxies in the sample. The lambdaR parameter, a proxy for the specific stellar angular momentum, is calculated for each galaxy in the sample. We find a trend between lambdaR and galaxy concentration such that LTGs are less concentrated higher angular momentum systems, with the fast-rotating ETGs (FRs) more concentrated and lower in angular momentum. This suggests that some dynamical processes are involved in transforming LTGs to FRs, though a significant overlap between the lambdaR distributions of these classes of galaxies implies that this is just one piece of a more complicated picture. We measure the kinematic misalignment angle, Psi, for the ETGs in the sample, to probe the intrinsic shapes of the galaxies. We find the majority of FRs (83 per cent) to be aligned, consistent with them being oblate spheroids (i.e. discs). The slow rotating ETGs (SRs), on the other hand, are significantly more likely to show kinematic misalignment (only 38 per cent are aligned). This confirms previous results that SRs are likely to be mildly triaxial systems
The face of equipoise - delivering a structured education programme within a randomized controlled trial: qualitative study
Background: In trials of behavioural interventions, the individuals who deliver the intervention are in a position of key influence on the success of the trial. Their fidelity to the intervention is crucial. Yet little is understood about the experiences of this group of trial personnel. This study aimed to investigate the views and experiences of educators who delivered a structured education intervention to people with type 2 diabetes, which incorporated training in self-monitoring of either blood glucose (SMBG) or urine glucose (SMUG) as part of a randomized controlled trial (RCT).
Methods: Educators’ views were explored through focus groups before and after training (N = 18) and approximately 1 year into the trial (N = 14), and semi-structured telephone interviews at approximately 2 years (N = 7). Analysis was based on the constant comparative method.
Results: Educators held preferences regarding the intervention variants; thus, they were not in individual equipoise. Training raised awareness of preferences and their potential to impact on delivery. Educators were confident in their unbiased delivery, but acknowledged the challenges involved. Concealing their preferences was helped by a sense of professionalism, the patient-centred nature of the intervention, and concessions in the trial protocol (enabling participants to swap monitoring methods if needed). Commitment to unbiased delivery was explained through a desire for evidence-based knowledge in the contentious area of SMBG.
Conclusions: The findings provide insight into a previously unexplored group of trial personnel - intervention deliverers in trials of behavioural interventions - which will be useful to those designing and running similar trials. Rather than individual equipoise, it is intervention deliverers’ awareness of personal preferences and their potential impact on the trial outcome that facilitates unbiased delivery. Further, awareness of community equipoise, the need for evidence, and relevance to the individual enhance commitment to the RCT
- …