4,664 research outputs found

    Electrical charging of ash in Icelandic volcanic plumes

    Full text link
    The existence of volcanic lightning and alteration of the atmospheric potential gradient in the vicinity of near-vent volcanic plumes provides strong evidence for the charging of volcanic ash. More subtle electrical effects are also visible in balloon soundings of distal volcanic plumes. Near the vent, some proposed charging mechanisms are fractoemission, triboelectrification, and the so-called "dirty thunderstorm" mechanism, which is where ash and convective clouds interact electrically to enhance charging. Distant from the vent, a self-charging mechanism, probably triboelectrification, has been suggested to explain the sustained low levels of charge observed on a distal plume. Recent research by Houghton et al. (2013) linked the self-charging of volcanic ash to the properties of the particle size distribution, observing that a highly polydisperse ash distribution would charge more effectively than a monodisperse one. Natural radioactivity in some volcanic ash could also contribute to self-charging of volcanic plumes. Here we present laboratory measurements of particle size distributions, triboelectrification and radioactivity in ash samples from the Gr\'{i}msv\"{o}tn and Eyjafjallaj\"{o}kull volcanic eruptions in 2011 and 2010 respectively, and discuss the implications of our findings.Comment: XV Conference on Atmospheric Electricity, 15-20 June 2014, Norman, Oklahoma, US

    The design of a multi-cell box in pure bending for minimum weight

    Get PDF
    The optimum skin thickness, web thickness and web pitch to be used for a multi-cell box of given depth under a given bending load are obtained by two different methods, resulting in a graph where the optimum geometry is plotted against the structural index for a given materia

    Hyperinsulinemic hypoglycemia in children and adolescents: Recent advances in understanding of pathophysiology and management

    Get PDF
    Hyperinsulinemic hypoglycemia (HH) is characterized by unregulated insulin release, leading to persistently low blood glucose concentrations with lack of alternative fuels, which increases the risk of neurological damage in these patients. It is the most common cause of persistent and recurrent hypoglycemia in the neonatal period. HH may be primary, Congenital HH (CHH), when it is associated with variants in a number of genes implicated in pancreatic development and function. Alterations in fifteen genes have been recognized to date, being some of the most recently identified mutations in genes HK1, PGM1, PMM2, CACNA1D, FOXA2 and EIF2S3. Alternatively, HH can be secondary when associated with syndromes, intra-uterine growth restriction, maternal diabetes, birth asphyxia, following gastrointestinal surgery, amongst other causes. CHH can be histologically characterized into three groups: diffuse, focal or atypical. Diffuse and focal forms can be determined by scanning using fluorine-18 dihydroxyphenylalanine-positron emission tomography. Newer and improved isotopes are currently in development to provide increased diagnostic accuracy in identifying lesions and performing successful surgical resection with the ultimate aim of curing the condition. Rapid diagnostics and innovative methods of management, including a wider range of treatment options, have resulted in a reduction in co-morbidities associated with HH with improved quality of life and long-term outcomes. Potential future developments in the management of this condition as well as pathways to transition of the care of these highly vulnerable children into adulthood will also be discussed.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.Nick Oliver is supported by the NIHR BRC at Imperial College Healthcare NHS Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The other authors have no funding to declare. Sarah Flanagan is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (105,636/Z/14/Z). The other authors are not supported by grants or fellowships.published version, accepted version (12 month embargo

    Theory of many-fermion systems II: The case of Coulomb interactions

    Get PDF
    In a recent paper (cond-mat/9703164) a general field-theoretical description of many-fermion systems with short-ranged interactions has been developed. Here we extend this theory to the case of disordered electrons interacting via a Coulomb potential. A detailed discussion is given of the Ward identity that controls the soft modes in the system, and the generalized nonlinear sigma model for the Coulombic case is derived and discussed.Comment: 12 pp., REVTeX, no figs, final version as publishe

    A note on the discontinuity stresses at the junction of a pressurised spherical shell and a cylinder

    Get PDF
    An analysis has been made of the forces and moments occurring at the junction of a pressurised spherical shell with an intersecting cylinder. The additional effects of having a temperature gradient along the length of the cylinder and the effect of a jointing ring have been considered

    Large time dynamics and aging of a polymer chain in a random potential

    Full text link
    We study the out-of-equilibrium large time dynamics of a gaussian polymer chain in a quenched random potential. The dynamics studied is a simple Langevin dynamics commonly referred to as the Rouse model. The equations for the two-time correlation and response function are derived within the gaussian variational approximation. In order to implement this approximation faithfully, we employ the supersymmetric representation of the Martin-Siggia-Rose dynamical action. For a short ranged correlated random potential the equations are solved analytically in the limit of large times using certain assumptions concerning the asymptotic behavior. Two possible dynamical behaviors are identified depending upon the time separation- a stationary regime and an aging regime. In the stationary regime time translation invariance holds and so is the fluctuation dissipation theorem. The aging regime which occurs for large time separations of the two-time correlation functions is characterized by history dependence and the breakdown of certain equilibrium relations. The large time limit of the equations yields equations among the order parameters that are similar to the equations obtained in the statics using replicas. In particular the aging solution corresponds to the broken replica solution. But there is a difference in one equation that leads to important consequences for the solution. The stationary regime corresponds to the motion of the polymer inside a local minimum of the random potential, whereas in the aging regime the polymer hops between different minima. As a byproduct we also solve exactly the dynamics of a chain in a random potential with quadratic correlations.Comment: 21 pages, RevTeX

    Symmetric Skyrmions

    Get PDF
    We present candidates for the global minimum energy solitons of charge one to nine in the Skyrme model, generated using sophisticated numerical algorithms. Assuming the Skyrme model accurately represents the low energy limit of QCD, these configurations correspond to the classical nuclear ground states of the light elements. The solitons found are particularly symmetric, for example, the charge seven skyrmion has icosahedral symmetry, and the shapes are shown to fit a remarkable sequence defined by a geometric energy minimization (GEM) rule. We also calculate the energies and sizes to within at least a few percent accuracy. These calculations provide the basis for a future investigation of the low energy vibrational modes of skyrmions and hence the possibility of testing the Skyrme model against experiment.Comment: latex, 9 pages, 1 figure (fig1.gif

    Exact Nonperturbative Unitary Amplitudes for 1->N Transitions

    Full text link
    I present an extension to arbitrary N of a previously proposed field theoretic model, in which unitary amplitudes for 1−>81->8 processes were obtained. The Born amplitude in this extension has the behavior A(1−>N)tree = gN−1 N!A(1->N)^{tree}\ =\ g^{N-1}\ N! expected in a bosonic field theory. Unitarity is violated when ∣A(1−>N)∣>1|A(1->N)|>1, or when N>Ncrit≃e/g.N>\N_crit\simeq e/g. Numerical solutions of the coupled Schr\"odinger equations shows that for weak coupling and a large range of N>\ncrit, the exact unitary amplitude is reasonably fit by a factorized expression |A(1->N)| \sim (0.73 /N) \cdot \exp{(-0.025/\g2)}. The very small size of the coefficient 1/\g2 , indicative of a very weak exponential suppression, is not in accord with standard discussions based on saddle point analysis, which give a coefficient ∼1. \sim 1.\ The weak dependence on NN could have experimental implications in theories where the exponential suppression is weak (as in this model). Non-perturbative contributions to few-point correlation functions in this theory would arise at order $K\ \simeq\ \left((0.05/\g2)+ 2\ ln{N}\right)/ \ ln{(1/\g2)}inanexpansioninpowersof in an expansion in powers of \g2.$Comment: 11 pages, 3 figures (not included

    'Tilting' the Universe with the Landscape Multiverse: The 'Dark' Flow

    Full text link
    The theory for the selection of the initial state of the universe from the landscape multiverse predicts superhorizon inhomogeneities induced by nonlocal entanglement of our Hubble volume with modes and domains beyond the horizon. Here we show these naturally give rise to a bulk flow with correlation length of order horizon size. The modification to the gravitational potential has a characteristic scale L1≃103H−1L_{1} \simeq 10^{3} H^{-1}, and it originates from the preinflationary remnants of the landscape. The 'tilt' in the potential induces power to the lowest CMB multipoles, with the dominant contribution being the dipole and next, the quadrupole. The induced multipoles l≤2l \le 2 are aligned with an axis normal to their alignment plane being oriented along the preferred frame determined by the dipole. The preferred direction is displayed by the velocity field of the bulk flow relative to the expansion frame of the universe. The parameters are tightly constrained thus the derived modifications lead to robust predictions for testing our theory. The 'dark' flow was recently discovered by Kashlinsky et al. to be about 700km/s700 km/s which seems in good agreement with our predictions for the induced dipole of order 3μK3 \mu K. Placed in this context, the discovery of the bulk flow by Kashlinsky et al. becomes even more interesting as it may provide a probe of the preinflationary physics and a window onto the landscape multiverse.Comment: 7 pgs, 2 fig
    • …
    corecore