55 research outputs found

    Native and bone marrow-derived cell mosaicism in gastric carcinoma in H. pylori-infected p27-deficient mice

    Get PDF
    OBJECTIVE: Chronic Helicobacter pylori (H. pylori) infection promotes non-cardia gastric cancer. Some mouse models suggest that bone marrow derived cells (BMDC) contribute to Helicobacter-associated gastric carcinogenesis. We determined whether this increased susceptibility to Helicobacter-induced gastric carcinogenesis of p27-deficient mice is dependent upon their p27-null BMDC or their p27-null gastric epithelial cells. DESIGN: Female mice (recipients) were irradiated and transplanted with BMDC from male donors. Wild type (WT) mice in group 1 (control) received BMDC from male GFP-transgenic mice. Female WT and p27 KO mice were engrafted with male p27KO mice BMDC (Group 2) or GFP-transgenic WT BMDC (Group 3). Recipients were infected with H. pylori SS1 for one year. RESULTS: Mice lacking p27 in either the BM pool or gastric epithelium developed significantly more advanced gastric pathology, including high-grade dysplasia. Co-staining of donor BMDC in dysplastic gastric glands was confirmed by immunofluorescence. Gastric expression of IL-1 beta protein was reduced in groups 2 and 3 (p \u3c 0.05 vs control) whereas expression of IFN-gamma and chemokines MIP-1 beta, MIG, IP-10 and RANTES in group 2 were significantly higher than group 3. CONCLUSIONS: Both bone marrow-derived and gastric epithelial cells contribute to the increased gastric cancer susceptibility of p27-deficient H. pylori-infected mice

    Overcoming Fas-mediated apoptosis accelerates Helicobacter-induced gastric cancer in mice

    Get PDF
    The initiating molecular events in Helicobacter-induced gastric carcinogenesis are not known. Early in infection, Fas antigen-mediated apoptosis depletes parietal and chief cell populations, leading to architectural distortion. As infection progresses, metaplastic and dysplastic glands appear, which are resistant to Fas-mediated apoptosis. These abnormal lineages precede, and are thought to be the precursor lesions of, gastric cancer. Acquisition of an antiapoptotic phenotype before transformation of cells suggests that loss of Fas sensitivity may be an early required trait for gastric cancer. We reasoned that forced Fas-apoptosis resistance would result in earlier and more aggressive gastric cancer in our mouse model. Fas antigen-deficient (lpr) mice or C57BL/6 wild-type mice were irradiated and reconstituted with C57BL/6 marrow forming partial lpr/wt chimera or wt/wt control mice, extending the life span of the lpr and ensuring a competent immune response to Helicobacter felis infection. Infected lpr/wt mice developed gastric cancer as early as 7 months after infection (compared with 15 months in wt/wt mice). At 10 months (90%) and 15 months (100%), mice developed aggressive invasive lesions. This earlier onset and more aggressive histology strongly argues that Fas-apoptosis resistance is an early and important feature of gastric cancer formation

    HIV-1 unmasks the plasticity of innate lymphoid cells [preprint]

    Get PDF
    Pharmaceuticals that suppress HIV-1 viremia preserve CD4+ T cells and prevent AIDS. Nonetheless, HIV-1 infected people taking these drugs have chronic inflammation attributable to persistent disruption of intestinal barrier function with increased rates of cardiovascular mortality. To better understand the etiology of this inflammation we examined the effect of HIV-1 infection on innate lymphoid cells (ILCs). These innate immune counterparts of T cells lack clonotypic antigen receptors, classify according to signature transcription factors and cytokines, and maintain homeostasis in inflamed tissues. ILCs have been defined, in part, by the IL-7Rα, CD127. Here we report that the vast majority of type 1 and 3 ILCs in human adult and placental cord blood are in fact CD127-, as are colon lamina propria ILC1s and many ILC3s. Among ILCs, CD127-ILC1s were the major producer of inflammatory cytokines. In contrast to CD127+ILC3s, CD127-ILC3s did not produce IL-22, a cytokine that maintains epithelial barrier function. In HIV-1+ people taking antivirals that preserve CD4+ T cells, CD127-ILC1s and all homeostatic cytokine-producing CD127+ILCs were decreased in blood and colon. Common γ-chain cytokines that are reported to be elevated in response to HIV-1 infection caused JAK3-dependent downregulation of CD127 and converted CD127-ILC1s into NK cells with heightened cytolytic activity. Consistent with the recent report that human blood CD117+ILCs give rise to both ILC1s and NK cells, pseudotemporal clustering of transcriptomes from thousands of individual cells identified a developmental trajectory from CD127-ILC1s to memory NK cells that was defined by WNT-transcription factor TCF7. WNT inhibition prevented the cytokine-induced transition of CD127-ILC1 cells into memory NK cells. In HIV-1+ people, effector NK cells and TCF7+ memory NK cells were elevated, concomitant with reduction in CD127-ILC1s. These studies describe previously overlooked human ILC subsets that are significant in number and function, identify profound abnormalities in homeostatic ILCs that likely contribute to ongoing inflammation in HIV-1 infection despite control of viremia, provide explanation for increased memory NK cells in HIV-1 infection, and reveal functional plasticity of ILCs

    Glycine-extended gastrin promotes the growth of lung cancer

    Get PDF
    The less processed forms of gastrin have recently been shown to act as trophic factors for both normal and malignant colonic cells. Although incompletely processed forms of gastrin such as glycine-extended gastrin and progastrin are also expressed in human lung cancers, the clinical significance of this expression has not been addressed. Consequently, we investigated the effects of overexpression of glycine-extended gastrin in a mouse strain that is prone to developing lung cancer and also examined the expression of incompletely processed gastrins in primary human lung cancers. We found that transgenic overexpression of glycine-extended gastrin in FVB/N mice resulted in a significant increase in the prevalence and growth of bronchoalveolar carcinoma. In addition, a substantial subset of human lung cancers was found to express progastrin and/or glycine-extended gastrin. Overexpression of glycine-extended gastrin by human lung cancers was associated with a significantly decreased survival. Taken together, these results suggest that glycine-extended gastrin may play a role in the growth and progression of some human lung cancers

    Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis

    Get PDF
    BACKGROUND: P-glycoprotein (P-gp) plays a critical role in protection of the intestinal epithelia by mediating efflux of drugs/xenobiotics from the intestinal mucosa into the gut lumen. Recent studies bring to light that P-gp also confers a critical link in communication between intestinal mucosal barrier function and the innate immune system. Yet, despite knowledge for over 10 years that P-gp plays a central role in gastrointestinal homeostasis, the precise molecular mechanism that controls its functional expression and regulation remains unclear. Here, we assessed how the intestinal microbiome drives P-gp expression and function. RESULTS: We have identified a functional core microbiome of the intestinal gut community, specifically genera within the Clostridia and Bacilli classes, that is necessary and sufficient for P-gp induction in the intestinal epithelium in mouse models. Metagenomic analysis of this core microbial community revealed that short-chain fatty acid and secondary bile acid production positively associate with P-gp expression. We have further shown these two classes of microbiota-derived metabolites synergistically upregulate P-gp expression and function in vitro and in vivo. Moreover, in patients suffering from ulcerative colitis (UC), we find diminished P-gp expression coupled to the reduction of epithelial-derived anti-inflammatory endocannabinoids and luminal content (e.g., microbes or their metabolites) with a reduced capability to induce P-gp expression. CONCLUSION: Overall, by means of both in vitro and in vivo studies as well as human subject sample analysis, we identify a mechanistic link between cooperative functional outputs of the complex microbial community and modulation of P-gp, an epithelial component, that functions to suppress overactive inflammation to maintain intestinal homeostasis. Hence, our data support a new cross-talk paradigm in microbiome regulation of mucosal inflammation. Video abstract

    Mesenchymal stem cells utilize CXCR4-SDF-1 signaling for acute, but not chronic, trafficking to gastric mucosal inflammation

    Get PDF
    BACKGROUND: Helicobacter infection is the main risk factor in developing gastric cancer. Mesenchymal stem cells (MSCs) are non-hematopoietic stromal cells, which are able to differentiate into different cell lineages. MSC contribute to cancer development by forming the tumor directly, contributing to the microenvironment, or by promoting angiogenesis and metastasis. CXCR4/SDF-1 axis is used by MSC in trafficking, homing, and engraftment at chronic inflammation sites, and plays an important role in tumorigenesis. AIM: To determine if CXCR4 receptor has a role in MSC contribution to the development of Helicobacter-mediated gastric cancer. METHODS: SDF-1 and CXCR4 expression in mouse gastric mucosa in the setting of acute and chronic inflammation was measured using RT-PCR. Mouse culture-adapted MSC express CXCR4. Wild-type C57BL/6 mice infected with Helicobacter felis for 6 months or controls were given IV injections of CXCR4 knock-down MSC. Animals were followed for another 4 months. Homing of MSC in the stomach was quantified using RT-PCR. MSC differentiation into gastric epithelia lineages was analyzed using immunohistochemistry and fluorescent in situ hybridization. RESULTS: CXCR4 and SDF-1 are both upregulated in the settings of Helicobacter-induced chronic gastric inflammation. CXCR4 is fully required for homing of MSC to the stomach in acute gastric inflammation, but only partially in Helicobacter-induced gastric cancer. MSC lead to gastric intraepithelial neoplasia as early as 10 months of Helicobacter infection. CONCLUSIONS: Our results show that MSC have a tumorigenic effect by promoting an accelerated form of gastric cancer in mice. The engraftment of MSC in chronic inflammation is only partially CXCR4-dependent

    Stem cells and cancer: evidence for bone marrow stem cells in epithelial cancers

    Get PDF
    Cancer commonly arises at the sites of chronic inflammation and infection. Although this association has long been recognized, the reason has remained unclear. Within the gastrointestinal tract, there are many examples of inflammatory conditions associated with cancer, and these include reflux disease and Barrettos adenocarcinoma of the esophagus, Helicobacter infection and gastric cancer, inflammatory bowel disease and colorectal cancer and viral hepatitis leading to hepatocellular carcinoma. There are several mechanisms by which chronic inflammation has been postulated to lead to cancer which includes enhanced proliferation in an endless attempt to heal damage, the presence of a persistent inflammatory environment creating a pro-carcinogenic environment and more recently a role for engraftment of circulating marrow-derived stem cells which may contribute to the stromal components of the tumor as well as the tumor mass itself. Here we review the recent advances in our understanding of the contributions of circulating bone marrow-derived stem cells to the formation of tumors in animal models as well as in human beings
    • …
    corecore