45 research outputs found

    Enhancement of Biogas Production from Rice Husk by NaOH and Enzyme Pretreatment

    Get PDF
    Biogas is a renewable energy source that can be used as an alternative fuel to replace fossil fuel such as oil and natural gas. This research aims to analyze the impact of NaOH (Sodium hydroxide) and enzyme usage on the production of rice husk biogas using Solid State Anaerobic Digestion (SS-AD). Generally, SS-AD occurs at solid concentrations higher than 15%. The waste of rice husk are used as substrate with a C/N ratio of 25% and the total of solid that are used is 21%. Rice husk contains high lignin, therefore it is handled with chemical and biological treatment. The chemical preliminary treatment was using NaOH with various concentrations from 3%, 6% and 9% while the biological preliminary treatment was using enzyme with various concentration from 5%, 8%, and 11%. The biogas that is produced then measured every two days during 60 days of research with the biogas volume as a parameter observed. The result of the research shows that preliminary treatment with NaOH and enzyme can increase the production of biogas. The highest biogas production was obtained by the NaOH pretreatment using 6% NaOH which was 497 ml and by enzyme pretreatment using 11% enzyme which was 667,5 ml

    Electron spectroscopy of nanocrystalline diamond surfaces

    Get PDF
    Thin, fully optically transparent nanocrystalline diamond (NCD) films prepared at growth temperatures from 400 °C to 1100 °C were well characterized by SEM, AFM, and by angularresolved x-ray photoelectron spectroscopy (ARXPS). The ARXPS spectra were applied for estimating the extent of sp 3 hybridization of carbon atoms in a surface region of the NCD films. Elastic peak electron spectroscopy (EPES) was used for assessment of the inelastic mean free path (IMFP) values of electrons in NCD films in the electron energy range 200 eV -2400 eV. The resulting IMFPs were compared to the IMFPs calculated from the optical data and from the TPP-2M predictive formulae

    Laser clad and HVOF sprayed Stellite 6 coating in chlorine rich environment with KCI at 700 °C

    Get PDF
    Laser clads and HVOF coatings from a stellite 6 alloy (Co–Cr–W–C alloy) on 304 stainless steel substrates were exposed both bare and with KCl deposits in 500 ppm HCl with 5% O2 for 250 h at 700 C. SEM/EDX and PXRD analyses with Rietveld refinement were used for assessment of the attack and for analysis of the scales. The bare samples suffered from scale spallation and the scale was mostly composed of Cr2O3, CoCr2O4 and CoO, although due to dilution haematite (Fe2O3) was detected in the scale formed on the laser clad sample. A small amount of hydrated HCl was detected in bare samples. While the corrosion of the bare surfaces was limited to comparatively shallow depths and manifested by g and M7C3 carbide formation, the presence of KCl on the surface led to severe Cr depletion from the HVOF coating (to 1 wt%). Both inward and outward diffusion of elements occurred in the HVOF coating resulting in Kirdendall voids at the coating–steel interface. The laser clad sample performed significantly better in conditions of the KCl deposit-induced corrosion. In addition to the oxides, CoCl2 was detected in the HVOF sample and K3CrO4 was detected in the laser clad sample. Thermodynamic calculations and kinetic simulations were carried out to interpret the oxidation and diffusion behaviours of coatings

    Antibacterial Activity of Thymus vulgaris L. Essential Oil Vapours and Their GC/MS Analysis Using Solid-Phase Microextraction and Syringe Headspace Sampling Techniques

    No full text
    While the inhalation of Thymus vulgaris L. essential oil (EO) is commonly approved for the treatment of mild respiratory infections, there is still a lack of data regarding the antimicrobial activity and chemical composition of its vapours. The antibacterial activity of the three T. vulgaris EOs against respiratory pathogens, including Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pyogenes, was assessed in both liquid and vapour phases using the broth microdilution volatilisation (BMV) method. With the aim of optimising a protocol for the characterisation of EO vapours, their chemical profiles were determined using two headspace sampling techniques coupled with GC/MS: solid-phase microextraction (HS-SPME) and syringe headspace sampling technique (HS-GTS). All EO sample vapours exhibited antibacterial activity with minimum inhibitory concentrations (MIC) ranging from 512 to 1024 μg/mL. According to the sampling technique used, results showed a different distribution of volatile compounds. Notably, thymol was found in lower amounts in the headspace—peak percentage areas below 5.27% (HS-SPME) and 0.60% (HS-GTS)—than in EOs (max. 48.65%), suggesting that its antimicrobial effect is higher in vapour. Furthermore, both headspace sampling techniques were proved to be complementary for the analysis of EO vapours, whereas HS-SPME yielded more accurate qualitative results and HS-GTS proved a better technique for quantitative analysis

    Biogas: A renewable source of energy

    No full text
    First part of the paper deals with biogas produced in the process of anaerobic digestion. Possibilities of biogas utilization are commented briefly. Laboratory fermentation unit that was built at the Institute of Process and Environmental Engineering is described further on. The laboratory fermentation unit is used for digestion of new types of substrate and for process optimization. Finally, the biogas plant built in Sweden is described. Biogas produced there is treated and used as a fuel for public transport vehicles

    Biogas: A renewable source of energy

    No full text

    New Broth Macrodilution Volatilization Method for Antibacterial Susceptibility Testing of Volatile Agents and Evaluation of Their Toxicity Using Modified MTT Assay In Vitro

    No full text
    In this study, a new broth macrodilution volatilization method for the simple and rapid determination of the antibacterial effect of volatile agents simultaneously in the liquid and vapor phase was designed with the aim to assess their therapeutic potential for the development of new inhalation preparations. The antibacterial activity of plant volatiles (β-thujaplicin, thymohydroquinone, thymoquinone) was evaluated against bacteria associated with respiratory infections (Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes) and their cytotoxicity was determined using a modified thiazolyl blue tetrazolium bromide assay against normal lung fibroblasts. Thymohydroquinone and thymoquinone possessed the highest antibacterial activity against H. influenzae, with minimum inhibitory concentrations of 4 and 8 µg/mL in the liquid and vapor phases, respectively. Although all compounds exhibited cytotoxic effects on lung cells, therapeutic indices (TIs) suggested their potential use in the treatment of respiratory infections, which was especially evident for thymohydroquinone (TI > 34.13). The results demonstrate the applicability of the broth macrodilution volatilization assay, which combines the principles of broth microdilution volatilization and standard broth macrodilution methods. This assay enables rapid, simple, cost- and labor-effective screening of volatile compounds and overcomes the limitations of assays currently used for screening of antimicrobial activity in the vapor phase

    Chemical Composition and Antistaphylococcal Activity of Essential Oil of <i>Curcuma mangga</i> Rhizome from Indonesia

    No full text
    This study assessed the antistaphylococcal activity of essential oil (EO) hydrodistilled from the rhizome of Curcuma mangga grown in Indonesia using the broth microdilution volatilization method and standard broth microdilution method modified for evaluation of volatile agents, as well as described its chemical composition using gas chromatography (GC) with mass spectrometry (MS). A fused-silica HP-5MS column and a DB-17MS column were used to separate the components into two columns. The results demonstrated that the EO exhibited antistaphylococcal activity at the minimum inhibitory concentration (MIC) ranging from 128 to 1024 µg/mL. In contrast, the clinical isolate of tetracycline-resistant Staphylococcus aureus was the most sensitive strain (MIC 128 µg/mL). The major constituents of the EO were 15,16-dinorlabda-8(17),11-dien-13-one (24.63/15.78%), followed by ambrial (16.12/10.97%), 13-nor-eremophil-1(10)-en-11-one (7.16/6.21%), 15,16-dinorlabda-8(17),12-dien-14-al (6.61/11.57%), and aromadendrene oxide (5.98/3.77%). These results propose C. mangga rhizome EO as a promising agent for developing natural-based anti-infective preparations

    On the Origin of Reduced Cytotoxicity of Germanium-Doped Diamond-Like Carbon: Role of Top Surface Composition and Bonding

    No full text
    This work attempts to understand the behaviour of Ge-induced cytotoxicity of germanium-doped hydrogen-free diamond-like carbon (DLC) films recently thoroughly studied and published by Jelinek et al. At a low doping level, the films showed no cytotoxicity, while at a higher doping level, the films were found to exhibit medium to high cytotoxicity. We demonstrate, using surface-sensitive methods—two-angle X-ray-induced core-level photoelectron spectroscopy (ARXPS) and Low Energy Ion Scattering (LEIS) spectroscopy, that at a low doping level, the layers are capped by a carbon film which impedes the contact of Ge species with tissue. For higher Ge content in the DLC films, oxidized Ge species are located at the top surface of the layers, provoking cytotoxicity. The present results indicate no threshold for Ge concentration in cell culture substrate to avoid a severe toxic reaction
    corecore