5 research outputs found
Chitosan adhesives with sub-micron structures for photochemical tissue bonding
We describe a method for fabricating biocompatible chitosan-based adhesives with sub-micron structures to enhance tissue bonding. This procedure avoids coating and chemical modification of structures and requires a simple drop-casting step for the adhesive film formation. Chitosan thin films (27±3 μm) were fabricated with sub-micron pillars (rectangular cuboid with height ∼150 nm, square dimension ∼1 μm and pitch ∼2 μm) or holes (diameter ~500 nm or ~1 μm, depth ~100 or 400 nm, pitch of 1 or 2 μm). Polydimethylsiloxane moulds were used as negative templates for the adhesive solution that was cast and then allowed to dry to form thin films. These were applied on bisected rectangular strips of small sheep intestine and photochemically bonded by a green laser (λ= 532 nm, irradiance ∼110 J/cm2 ). The tissue repair was subsequently measured using a computer-interfaced tensiometer. The mould sub-micron structures were reproduced in the chitosan adhesive with high fidelity. The adhesive with pillars achieved the highest bonding strength (17.1±1.2 kPa) when compared to the adhesive with holes (13.0±1.3 kPa, p<0.0001, one-way ANOVA, n=15). The production of chitosan films with patterned pillars or holes in the sub-micron range was demonstrated, using a polydimethylsiloxane mould and a single drop-casting step. This technique is potentially scalable to produce adhesives of larger surface areas
Photodynamic therapy with nanoparticles to combat microbial infection and resistance
Infections caused by drug-resistant pathogens are rapidly increasing in incidence and pose an urgent global health concern. New treatments are needed to address this critical situation while preventing further resistance acquired by the pathogens. One promising approach is antimicrobial photodynamic therapy (PDT), a technique that selectively damages pathogenic cells through reactive oxygen species (ROS) that have been deliberately produced by light-activated chemical reactions via a photosensitiser. There are currently some limitations to its wider deployment, including aggregation, hydrophobicity, and sub-optimal penetration capabilities of the photosensitiser, all of which decrease the production of ROS and lead to reduced therapeutic performance. In combination with nanoparticles, however, these challenges may be overcome. Their small size, functionalisable structure, and large contact surface allow a high degree of internalization by cellular membranes and tissue barriers. In this review, we first summarise the mechanism of PDT action and the interaction between nanoparticles and the cell membrane. We then introduce the categorisation of nanoparticles in PDT, acting as nanocarriers, photosensitising molecules, and transducers, in which we highlight their use against a range of bacterial and fungal pathogens. We also compare the antimicrobial efficiency of nanoparticles to unbound photosensitisers and examine the relevant safety considerations. Finally, we discuss the use of nanoparticulate drug delivery systems in clinical applications of antimicrobial PDT
Effective photodynamic treatment of Trichophyton species with Rose Bengal
Photodynamic therapy (PDT) with Rose Bengal has previously achieved eradication of Trichophyton rubrum infections causing toenail onychomycosis; however, its antifungal activity against other clinically relevant dermatophytes has yet to be studied. Here, we test the efficacy of PDT using Rose Bengal (140 μM) and 532 nm irradiation (101 J/cm2 ) against Trichophyton mentagrophytes and Trichophyton interdigitale spores, in comparison to T. rubrum. A significant reduction (>99%) of T. mentagrophytes and T. interdigitale was observed, while actual eradication of viable T. rubrum was achieved (99.99%). Laser irradiation alone inhibited growth of T. rubrum (55.2%) and T. mentagrophytes (45.2%) significantly more than T. interdigitale (25.5%) (P = .0086), which may indicate an increased presence of fungal pigments, xanthomegnin and melanin. The findings suggest that Rose Bengal-PDT can act against a broader spectrum of fungal pathogens, and with continued development may be employed in a wider range of clinical antifungal applications
[In Press] Fabrication and characterization of chitosan nanoparticles using the coffee-ring effect for photodynamic therapy
Background and Objectives: Biocompatible nanoparticles have been increasingly
used in a variety of medical applications, including photodynamic therapy. Although the impact of synthesis parameters and purification methods is reported in previous studies, it is still challenging to produce a reliable protocol for the fabrication, purification, and characterization of nanoparticles in the 200–300 nm range that are highly monodisperse for biomedical applications.
Study Design/Materials and Methods: We investigated the synthesis of chitosan
nanoparticles in the 200–300 nm range by evaluating the chitosan to sodium
tripolyphosphate (TPP) mass ratio and acetic acid concentration of the chitosan
solution. Chitosan nanoparticles were also crosslinked to rose bengal and incubated with human breast cancer cells (MCF‐7) to test photodynamic activity
using a green laser (λ = 532 nm, power = 90 mW). Results: We established a simple protocol to fabricate and purify biocompatible nanoparticles with the most frequent size occurring between 200 and 300 nm. This was achieved using a chitosan to TPP mass ratio of 5:1 in 1% v/v acetic acid at a pH of 5.5. The protocol involved the formation of nanoparticle coffee rings that showed the particle shape to be spherical in the first approximation. Photodynamic treatment with rose bengal‐nanoparticles killed ~98% of cancer cells.
Conclusion: A simple protocol was established to prepare and purify spherical and biocompatible chitosan nanoparticles with a peak size of ~200 nm. These have
remarkable antitumor activity when coupled with photodynamic treatment
[In Press] Rose bengal–encapsulated chitosan nanoparticles for the photodynamic treatment of Trichophyton species
Rose bengal (RB) solutions coupled with a green laser have proven to be efficient in clearing resilient nail infections caused by Trichophyton rubrum in a human pilot study and in extensive in vitro experiments. Nonetheless, the RB solution can become diluted or dispersed over the tissue and prevented from penetrating the nail plate to reach the subungual area where fungal infection proliferates. Nanoparticles carrying RB can mitigate the problem of dilution and are reported to effectively penetrate through the nail. For this reason, we have synthesized RB-encapsulated chitosan nanoparticles with a peak distribution size of ~200 nm and high reactive oxygen species (ROS) production. The RB-encapsulated chitosan nanoparticles aPDT were shown to kill more than 99% of T. rubrum, T. mentagrophytes, and T. interdigitale spores, which are the common clinically relevant pathogens in onychomycosis. These nanoparticles are not cytotoxic against human fibroblasts, which promotes their safe application in clinical translation