4,682 research outputs found
Integration of pulp and paper technology with bioethanol production
BACKGROUND: Despite decades of work and billions of dollars of investments in laboratory and pilot plant projects, commercial production of cellulosic ethanol is only now beginning to emerge. Because of: (1)high technical risk coupled with; (2) high capital investment cost relative to ethanol product value, investors have not been able to justify moving forward with large scale projects on woody biomass. RESULTS: Both issues have been addressed by targeting pulp and paper industry processes for application in bioethanol production, in Greenfield, Repurpose and Co-Location scenarios. Processes commercially proven in hundreds of mills for many decades have been tailored to the recalcitrance of the biomass available. Economically feasible cellulosic bioethanol can be produced in Greenfield application with hardwoods, but not softwoods, using kraft mill equipment. Both types of wood species can profitably produce ethanol when kraft mill or newsprint assets are Repurposed to a biorefinery. A third situation which can generate high financial returns is where excess kraft pulp is available at a mill which has no excess drying capacity. Each scenario is supported by laboratory simulation, engineering and financial analysis. While pretreatment is critical to providing access of the biomass to enzymes, capital investment per unit of ethanol produced can be attractive, even if ethanol yield is modest. CONCLUSIONS: Three guiding principles result in attractive economics: (1) re-use existing assets to the maximum extent; (2) keep the process as simple as possible; (3) match the recalcitrance of the biomass with the severity of the pretreatment
Fabrication of multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors by using CF4 plasma treatment
Multianalyte CeO2 biosensors have been demonstrated to detect pH, glucose, and urine concentrations. To enhance the multianalyte sensing capability of these biosensors, CF4 plasma treatment was applied to create nanograin structures on the CeO2 membrane surface and thereby increase the contact surface area. Multiple material analyses indicated that crystallization or grainization caused by the incorporation of flourine atoms during plasma treatment might be related to the formation of the nanograins. Because of the changes in surface morphology and crystalline structures, the multianalyte sensing performance was considerably enhanced. Multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors exhibit potential for use in future biomedical sensing device applications
New Method for Numerically Solving the Chemical Potential Dependence of the Dressed Quark Propagator
Based on the rainbow approximation of Dyson-Schwinger equation and the
assumption that the inverse dressed quark propagator at finite chemical
potential is analytic in the neighborhood of , a new method for
obtaining the dressed quark propagator at finite chemical potential from
the one at zero chemical potential is developed. Using this method the dressed
quark propagator at finite chemical potential can be obtained directly from the
one at zero chemical potential without the necessity of numerically solving the
corresponding coupled integral equations by iteration methods. A comparison
with previous results is given.Comment: Revtex, 14 pages, 5 figure
Tracking sustainability: co-evolution of economic and ecological activities in the industrialization of the United Kingdom and China
The co-evolution of economic and ecological activities represents one of the
fundamental challenges in the realm of sustainable development. This study on
the word trends in mainstream newspapers from the UK and China reveals that
both early-industrialised countries and latecomers follow three modes of
economic and ecological co-evolution. First, both economic and ecological words
demonstrate an S-shaped growth trajectory, and the mode underscores the
importance of information propagation, whilst also highlighting the crucial
role of self-organisation in the accept society. Second, the co-occurrence of
these two type words exhibits a Z-shaped relationship: for two-thirds of the
observed period, they display synergistic interactions, while the remaining
time shows trade-offs. Lastly, the words related to ecological degradation
follow M-shaped trajectories in parallel with economic growth, suggesting
periodic disruptions and reconstructions in their interrelationships. Our
findings contribute to a more nuanced understanding of the co-evolutionary
mechanisms that govern collective behaviours in human society
Causal Evidence for the Role of Specific GABAergic Interneuron Types in Entorhinal Recruitment of Dentate Granule Cells
The dentate gyrus (DG) is the primary gate of the hippocampus and controls
information flow from the cortex to the hippocampus proper. To maintain normal
function, granule cells (GCs), the principal neurons in the DG, receive fine-
tuned inhibition from local-circuit GABAergic inhibitory interneurons (INs).
Abnormalities of GABAergic circuits in the DG are associated with several
brain disorders, including epilepsy, autism, schizophrenia, and Alzheimer
disease. Therefore, understanding the network mechanisms of inhibitory control
of GCs is of functional and pathophysiological importance. GABAergic
inhibitory INs are heterogeneous, but it is unclear how individual subtypes
contribute to GC activity. Using cell-type-specific optogenetic perturbation,
we investigated whether and how two major IN populations defined by
parvalbumin (PV) and somatostatin (SST) expression, regulate GC input
transformations. We showed that PV-expressing (PV+) INs, and not SST-
expressing (SST+) INs, primarily suppress GC responses to single cortical
stimulation. In addition, these two IN classes differentially regulate GC
responses to θ and γ frequency inputs from the cortex. Notably, PV+ INs
specifically control the onset of the spike series, whereas SST+ INs
preferentially regulate the later spikes in the series. Together, PV+ and SST+
GABAergic INs engage differentially in GC input-output transformations in
response to various activity patterns
Recommended from our members
Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine.
In order to ensure the global competitiveness of the Pulp and Paper Industry in the Southeastern U.S., more wood with targeted characteristics have to be produced more efficiently on less land. The objective of the research project is to provide a molecular genetic basis for tree breeding of desirable traits in juvenile loblolly pine, using a multidisciplinary research approach. We developed micro analytical methods for determine the cellulose and lignin content, average fiber length, and coarseness of a single ring in a 12 mm increment core. These methods allow rapid determination of these traits in micro scale. Genetic variation and genotype by environment interaction (GxE) were studied in several juvenile wood traits of loblolly pine (Pinus taeda L.). Over 1000 wood samples of 12 mm increment cores were collected from 14 full-sib families generated by a 6-parent half-diallel mating design (11-year-old) in four progeny tests. Juvenile (ring 3) and transition (ring 8) for each increment core were analyzed for cellulose and lignin content, average fiber length, and coarseness. Transition wood had higher cellulose content, longer fiber and higher coarseness, but lower lignin than juvenile wood. General combining ability variance for the traits in juvenile wood explained 3 to 10% of the total variance, whereas the specific combining ability variance was negligible or zero. There were noticeable full-sib family rank changes between sites for all the traits. This was reflected in very high specific combining ability by site interaction variances, which explained from 5% (fiber length) to 37% (lignin) of the total variance. Weak individual-tree heritabilities were found for cellulose, lignin content and fiber length at the juvenile and transition wood, except for lignin at the transition wood (0.23). Coarseness had moderately high individual-tree heritabilities at both the juvenile (0.39) and transition wood (0.30). Favorable genetic correlations of volume and stem straightness were found with cellulose content, fiber length and coarseness, suggesting that selection on growth or stem straightness would results in favorable response in chemical wood traits. We have developed a series of methods for application of functional genomics to understanding the molecular basis of traits important to tree breeding for improved chemical and physical properties of wood. Two types of technologies were used, microarray analysis of gene expression, and profiling of soluble metabolites from wood forming tissues. We were able to correlate wood property phenotypes with expression of specific genes and with the abundance of specific metabolites using a new database and appropriate statistical tools. These results implicate a series of candidate genes for cellulose content, lignin content, hemicellulose content and specific extractible metabolites. Future work should integrate such studies in mapping populations and genetic maps to make more precise associations of traits with gene locations in order to increase the predictive power of molecular markers, and to distinguish between different candidate genes associated by linkage or by function. This study has found that loblolly pine families differed significantly for cellulose yield, fiber length, fiber coarseness, and less for lignin content. The implication for forest industry is that genetic testing and selection for these traits is possible and practical. With sufficient genetic variation, we could improve cellulose yield, fiber length, fiber coarseness, and reduce lignin content in Loblolly pine. With the continued progress in molecular research, some candidate genes may be used for selecting cellulose content, lignin content, hemicellulose content and specific extractible metabolites. This would accelerate current breeding and testing program significantly, and produce pine plantations with not only high productivity, but desirable wood properties as well
Impact of lignin and carbohydrate chemical structures on degradation reactions during hardwood kraft pulping processes
Most studies aimed at determining rates of hardwood delignification and carbohydrate degradation have focused on understanding the behavior of a single wood species. Such studies tend to determine either the delignification rate or the rate of carbohydrate degradation without examining the potential interactions resulting from related variables. The current study provides a comprehensive evaluation on both lignin and carbohydrate degradation during kraft pulping of multiple hardwood species. The kraft delignification rates of E. urograndis, E. nitens, E. globulus, sweet gum, maple, red oak, red alder, cottonwood, and acacia were obtained. Furthermore, the kinetics of glucan, xylan, and total carbohydrate dissolution during the bulk phase of the kraft pulping process for the above species were also investigated. The wide ranges of delignification and carbohydrate degradation rates were correlated to wood chemical characteristics. It appears that the S/G ratio and lignin-carbohydrate-complexes (LCCs) are the main characteristics responsible for the differences in kraft pulping performance among the hardwoods studied
- …