10,451 research outputs found

    Converting beam polarizations into entanglement and classical correlation

    Full text link
    The nonclassicality of a macroscopic single-mode optical superposition state is potentially convertible into entanglement, when the state is mixed with the vacuum on a beam splitter. Considering light beams with polarization degree of freedom in Euclidean space as coherent product states in a bipartite Hilbert space, we propose a method to convert the polarization amplitudes into entanglement and classical correlation through generating nonclassicality in the superpositions of coherent and displaced Fock states. Equivalent Bell state emerges from the resulted superpositions and the proportion of mixed entanglement and correlation, quantified by the metric pair of negativity and Schmidt number, is determined by the two displacements along the polarization directions. We further characterize the constructed states with Wigner functions and propose an experimental method for generating these states and measuring them via homodyne tomography

    CTRL: Connect Tabular and Language Model for CTR Prediction

    Full text link
    Traditional click-through rate (CTR) prediction models convert the tabular data into one-hot vectors and leverage the collaborative relations among features for inferring user's preference over items. This modeling paradigm discards the essential semantic information. Though some recent works like P5 and M6-Rec have explored the potential of using Pre-trained Language Models (PLMs) to extract semantic signals for CTR prediction, they are computationally expensive and suffer from low efficiency. Besides, the beneficial collaborative relations are not considered, hindering the recommendation performance. To solve these problems, in this paper, we propose a novel framework \textbf{CTRL}, which is industrial friendly and model-agnostic with high training and inference efficiency. Specifically, the original tabular data is first converted into textual data. Both tabular data and converted textual data are regarded as two different modalities and are separately fed into the collaborative CTR model and pre-trained language model. A cross-modal knowledge alignment procedure is performed to fine-grained align and integrate the collaborative and semantic signals, and the lightweight collaborative model can be deployed online for efficient serving after fine-tuned with supervised signals. Experimental results on three public datasets show that CTRL outperforms the SOTA CTR models significantly. Moreover, we further verify its effectiveness on a large-scale industrial recommender system

    Method of Processing and an Analysis of Meshing and Contact of Circular Arc Tooth Trace Cylindrical Gears

    Get PDF
    This paper presents the investigation into the tooth profile features, meshing characteristics and the principle of forming circular arc tooth race cylindrical gears (CATT gears). Based on the meshing theory of the curvilinear gear, tooth surface equations and meshing line equations of the gears and rack shave been established. The graphical analysis of these equations shows meshing performances. The results reveal that an ideal CATT gear can mesh with each other at a line contact and the rack cutter can machine an ideal CATT gear by translational motion. A planetary gear train is proposed to be used as processing device. The device consists of one or several gear pairs and it can be fixed to multiple tools. The new device can machine ideal tooth profiles and the teeth have the same thickness in the circumferential direction. The processing results show that the device can also adjust the forming radius of the tooth trace without grades and that it performs continuous cutting without introducing imbalance into the mechanism

    Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Get PDF
    A vacuum ultraviolet lamp based single photon ionization- (SPI-) photoelectron ionization (PEI) portable reflecting time-of-flight mass spectrometer (TOFMS) was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE) below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX), SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1) with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear

    Deterministic realization of collective measurements via photonic quantum walks

    Full text link
    Collective measurements on identically prepared quantum systems can extract more information than local measurements, thereby enhancing information-processing efficiency. Although this nonclassical phenomenon has been known for two decades, it has remained a challenging task to demonstrate the advantage of collective measurements in experiments. Here we introduce a general recipe for performing deterministic collective measurements on two identically prepared qubits based on quantum walks. Using photonic quantum walks, we realize experimentally an optimized collective measurement with fidelity 0.9946 without post selection. As an application, we achieve the highest tomographic efficiency in qubit state tomography to date. Our work offers an effective recipe for beating the precision limit of local measurements in quantum state tomography and metrology. In addition, our study opens an avenue for harvesting the power of collective measurements in quantum information processing and for exploring the intriguing physics behind this power.Comment: Close to the published versio

    Acceleration effect of reduced graphene oxide on photoinduced synthesis of silver nanoparticles

    Full text link
    The photoinduced growth reaction of silver nanoparticles was accelerated by reduced graphene oxide (RGO) produced from graphene oxide (GO) during the light irradiation process in aqueous solution. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy demonstrated that RGO was generated in the photoinduced process. The acceleration effect of RGO was investigated through monitoring the extinction spectra of silver nanoparticles during the synthesis process. Moreover, transmission electron microscopy (TEM) was employed to characterize the evolution of morphologies of silver nanoparticles at different irradiation times to demonstrate the effect of RGO. The results indicate that RGO accelerates the photoinduced synthesis of silver nanoparticles. It is proposed that the acceleration effect of RGO on the photoinduced reaction is attributed to the particular property of high electronic conductivit

    Effects of Changes in Moisture Source and the Upstream Rainout on Stable Isotopes in Precipitation – A Case Study in Nanjing, Eastern China

    Get PDF
    In the Asian monsoon region, variations in the stable isotopic composition of speleothems have often been attributed to the amount effect . However, an increasing number of studies suggest that the amount effect in local precipitation is insignificant or even non-existent. To explore this issue further, we examined the variability of daily stable isotopic composition (δ18O) in precipitation from September 2011 to November 2014 in Nanjing, eastern China. We found that intra-seasonal variations of δ18O during summer were not significantly correlated with local rainfall amount but could be linked to changes in the moisture source location and rainout processes in the source regions. Our findings suggest that the stable isotopes in summer precipitation could signal the location shift of precipitation source regions in the inter-tropical convergence zone (ITCZ) over the course of the monsoon season. As a result, changes in moisture source location and upstream rainout effect should be taken into account when interpreting the stable isotopic composition of speleothems in the Asian monsoon region. In addition, the temperature effect on isotopic variations in non-monsoonal precipitation should also be considered because precipitation in the non-monsoon season accounts for about half of its annual precipitation

    Research hotspots and trends of brain-computer interface technology in stroke: a bibliometric study and visualization analysis

    Get PDF
    BackgroundThe incidence and mortality rates of stroke are escalating due to the growing aging population, which presents a significant hazard to human health. In the realm of stroke, brain-computer interface (BCI) technology has gained considerable attention as a means to enhance treatment efficacy and improve quality of life. Consequently, a bibliometric visualization analysis was performed to investigate the research hotspots and trends of BCI technology in stroke, with the objective of furnishing reference and guidance for future research.MethodsThis study utilized the Science Citation Index Expanded (SCI-Expanded) within the Web of Science Core Collection (WoSCC) database as the data source, selecting relevant literature published between 2013 and 2022 as research sample. Through the application of VOSviewer 1.6.19 and CiteSpace 6.2.R2 visualization analysis software, as well as the bibliometric online analysis platform, the scientific knowledge maps were constructed and subjected to visualization display, and statistical analysis.ResultsThis study encompasses a total of 693 relevant literature, which were published by 2,556 scholars from 975 institutions across 53 countries/regions and have been collected by 185 journals. In the past decade, BCI technology in stroke research has exhibited an upward trend in both annual publications and citations. China and the United States are high productivity countries, while the University of Tubingen stands out as the most contributing institution. Birbaumer N and Pfurtscheller G are the authors with the highest publication and citation frequency in this field, respectively. Frontiers in Neuroscience has published the most literature, while Journal of Neural Engineering has the highest citation frequency. The research hotspots in this field cover keywords such as stroke, BCI, rehabilitation, motor imagery (MI), motor recovery, electroencephalogram (EEG), neurorehabilitation, neural plasticity, task analysis, functional electrical stimulation (FES), motor impairment, feature extraction, and induced movement therapy, which to a certain extent reflect the development trend and frontier research direction of this field.ConclusionThis study comprehensively and visually presents the extensive and in-depth literature resources of BCI technology in stroke research in the form of knowledge maps, which facilitates scholars to gain a more convenient understanding of the development and prospects in this field, thereby promoting further research work
    corecore