65 research outputs found

    Freeway Traffic Density and On-Ramp Queue Control via ILC Approach

    Get PDF
    A new queue length information fused iterative learning control approach (QLIF-ILC) is presented for freeway traffic ramp metering to achieve a better performance by utilizing the error information of the on-ramp queue length. The QLIF-ILC consists of two parts, where the iterative feedforward part updates the control input signal by learning from the past control data in previous trials, and the current feedback part utilizes the tracking error of the current learning iteration to stabilize the controlled plant. These two parts are combined in a complementary manner to enhance the robustness of the proposed QLIF-ILC. A systematic approach is developed to analyze the convergence and robustness of the proposed learning scheme. The simulation results are further given to demonstrate the effectiveness of the proposed QLIF-ILC

    A Novel Data-Driven Terminal Iterative Learning Control with Iteration Prediction Algorithm for a Class of Discrete-Time Nonlinear Systems

    Get PDF
    A data-driven predictive terminal iterative learning control (DDPTILC) approach is proposed for discrete-time nonlinear systems with terminal tracking tasks, where only the terminal output tracking error instead of entire output trajectory tracking error is available. The proposed DDPTILC scheme consists of an iterative learning control law, an iterative parameter estimation law, and an iterative parameter prediction law. If the partial derivative of the controlled system with respect to control input is bounded, then the proposed control approach guarantees the terminal tracking error convergence. Furthermore, the control performance is improved by using more information of predictive terminal outputs, which are predicted along the iteration axis and used to update the control law and estimation law. Rigorous analysis shows the monotonic convergence and bounded input and bounded output (BIBO) stability of the DDPTILC. In addition, extensive simulations are provided to show the applicability and effectiveness of the proposed approach

    mirTools: microRNA profiling and discovery based on high-throughput sequencing

    Get PDF
    miRNAs are small, non-coding RNA that negatively regulate gene expression at post-transcriptional level, which play crucial roles in various physiological and pathological processes, such as development and tumorigenesis. Although deep sequencing technologies have been applied to investigate various small RNA transcriptomes, their computational methods are far away from maturation as compared to microarray-based approaches. In this study, a comprehensive web server mirTools was developed to allow researchers to comprehensively characterize small RNA transcriptome. With the aid of mirTools, users can: (i) filter low-quality reads and 3/5ā€² adapters from raw sequenced data; (ii) align large-scale short reads to the reference genome and explore their length distribution; (iii) classify small RNA candidates into known categories, such as known miRNAs, non-coding RNA, genomic repeats and coding sequences; (iv) provide detailed annotation information for known miRNAs, such as miRNA/miRNA*, absolute/relative reads count and the most abundant tag; (v) predict novel miRNAs that have not been characterized before; and (vi) identify differentially expressed miRNAs between samples based on two different counting strategies: total read tag counts and the most abundant tag counts. We believe that the integration of multiple computational approaches in mirTools will greatly facilitate current microRNA researches in multiple ways. mirTools can be accessed at http://centre.bioinformatics.zj.cn/mirtools/ and http://59.79.168.90/mirtools

    Dataā€driven urban traffic modelā€free adaptive iterative learning control with traffic data dropout compensation

    No full text
    Abstract In this paper, to fully utilize the urban traffic flow characteristics of similarity and repeatability without using a mathematical traffic model, a dataā€driven urban traffic control strategy based on modelā€free adaptive iterative learning control (MFAILC) scheme is put forward. Firstly, by dynamically linearizing the urban traffic dynamics along the iteration axis, the traffic network system is transformed into a MFAILC data model with the help of repetitive pattern of urban traffic flow. Then, the traffic controller is designed based on the derived MFAILC data model only using the I/O data of the traffic network. Finally, a traffic data compensation method is proposed to deal with data dropout problem. Simulation study verifies the feasibility and effectiveness of the proposed controlĀ method

    Model Free Adaptive Control

    No full text

    Iterative learning control with unknown control direction: a novel data-based approach

    No full text
    Iterative learning control (ILC) is considered for both deterministic and stochastic systems with unknown control direction. To deal with the unknown control direction, a novel switching mechanism, based only on available system tracking error data, is first proposed. Then two ILC algorithms combined with the novel switching mechanism are designed for both deterministic and stochastic systems. It is proved that the ILC algorithms would switch to the right control direction and stick to it after a finite number of cycles. Moreover, the input sequence converges to the desired one under the deterministic case. The input sequence converges to the optimal one with probability 1 under stochastic case and the resulting tracking error tends to its minimal value

    Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems

    No full text
    In this paper, a data-driven model-free adaptive control (MFAC) approach is proposed based on a new dynamic linearization technique (DLT) with a novel concept called pseudo-partial derivative for a class of general multiple-input and multiple-output nonlinear discrete-time systems. The DLT includes compact form dynamic linearization, partial form dynamic linearization, and full form dynamic linearization. The main feature of the approach is that the controller design depends only on the measured input/output data of the controlled plant. Analysis and extensive simulations have shown that MFAC guarantees the bounded-input bounded-output stability and the tracking error convergence
    • ā€¦
    corecore