15,091 research outputs found

    TBC1D3 promotes neural progenitor proliferation by suppressing the histone methyltransferase G9a

    Get PDF

    Levinson's theorem for the Schr\"{o}dinger equation in two dimensions

    Full text link
    Levinson's theorem for the Schr\"{o}dinger equation with a cylindrically symmetric potential in two dimensions is re-established by the Sturm-Liouville theorem. The critical case, where the Schr\"{o}dinger equation has a finite zero-energy solution, is analyzed in detail. It is shown that, in comparison with Levinson's theorem in non-critical case, the half bound state for PP wave, in which the wave function for the zero-energy solution does not decay fast enough at infinity to be square integrable, will cause the phase shift of PP wave at zero energy to increase an additional Ï€\pi.Comment: Latex 11 pages, no figure and accepted by P.R.A (in August); Email: [email protected], [email protected]

    Quantum Dot in Z-shaped Graphene Nanoribbon

    Full text link
    Stimulated by recent advances in isolating graphene, we discovered that quantum dot can be trapped in Z-shaped graphene nanoribbon junciton. The topological structure of the junction can confine electronic states completely. By varying junction length, we can alter the spatial confinement and the number of discrete levels within the junction. In addition, quantum dot can be realized regardless of substrate induced static disorder or irregular edges of the junction. This device can be used to easily design quantum dot devices. This platform can also be used to design zero-dimensional functional nanoscale electronic devices using graphene ribbons.Comment: 4 pages, 3 figure

    The Relativistic Levinson Theorem in Two Dimensions

    Full text link
    In the light of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation in two dimensions is established as a relation between the total number njn_{j} of the bound states and the sum of the phase shifts ηj(±M)\eta_{j}(\pm M) of the scattering states with the angular momentum jj: ηj(M)+ηj(−M)                                   ˜                                                          \eta_{j}(M)+\eta_{j}(-M)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    ={(nj+1)Ï€when a half bound state occurs at E=M  and  j=3/2 or −1/2(nj+1)Ï€when a half bound state occurs at E=−M  and  j=1/2 or −3/2njπ the rest cases.~~~=\left\{\begin{array}{ll} (n_{j}+1)\pi &{\rm when~a~half~bound~state~occurs~at}~E=M ~~{\rm and}~~ j=3/2~{\rm or}~-1/2\\ (n_{j}+1)\pi &{\rm when~a~half~bound~state~occurs~at}~E=-M~~{\rm and}~~ j=1/2~{\rm or}~-3/2\\ n_{j}\pi~&{\rm the~rest~cases} . \end{array} \right. \noindent The critical case, where the Dirac equation has a finite zero-momentum solution, is analyzed in detail. A zero-momentum solution is called a half bound state if its wave function is finite but does not decay fast enough at infinity to be square integrable.Comment: Latex 14 pages, no figure, submitted to Phys.Rev.A; Email: [email protected], [email protected]
    • …
    corecore