15 research outputs found

    Structures and growth pathways of AunCln+3-(n≤7) cluster anions

    Get PDF
    Gold chloride clusters play an important role in catalysis and materials chemistry. Due to the diversity of their species and isomers, there is still a dearth of structural studies at the molecular level. In this work, anions of AunCln+3- and AunCln+5- (n = 2–4) clusters were obtained by laser desorption/ionization mass spectrometry (LDI MS), and the most stable isomers of AunCln+3- were determined after a thorough search and optimization at the TPSSh/aug-cc-pVTZ/ECP60MDF level. The results indicate that all isomers with the lowest energy have a planar zigzag skeleton. In each species, there is one Au(III) atom at the edge connected with four Cl atoms, which sets it from the other Au(I) atoms. Four growth pathways for AunCln+3- (n = 2–7) clusters are proposed (labelled R1, R2, R3 and R4). They are all associated with an aurophilic contact and are exothermic. The binding energies tend to stabilize at ~ −41 kcal/mol when the size of the cluster increases in all pathways. The pathway R1, which connects all the most stable isomers of the respective clusters, is characterized by cluster growth due to aurophilic interactions at the terminal atom of Au(I) in the zigzag chains. In the pathway of R4 involving Au-Au bonding in its initial structures (n ≤ 3), the distance between intermediate gold atoms grows with cluster size, ultimately resulting in the transfer of the intermediate Au-Au bonding into aurophilic interaction. The size effect on the structure and aurophilic interactions of these clusters will be better understood based on these discoveries, potentially providing new insights into the active but elusive chemical species involved in the corresponding catalytic reactions or nanoparticle synthesis processes

    Endometallofullerenes in the Gas Phase: Progress and Prospect

    No full text
    This review describes the progress of the gas-phase study of endometallofullerenes (EMFs) by mass spectrometry and theoretical calculation over the past 15 years. The attention herein focuses on the gas-phase syntheses, reactions, and generation mechanisms of some novel EMF ions, along with their structures and properties. The highlighted new species include EMFs with small-size carbon cages of C2n (n x@C2n, x ≥ 3), late transition metals, and encaged ionic bonds. Furthermore, the gas-phase experimental and calculational supports for top-down or bottom-up models are summarized and discussed. These gas-phase results not only provide experimental evidence for the existence of related novel EMF species and possible synthesis methods for them, but they also provide new insights about chemical bonds in restricted space. In addition, the opportunities and further development directions faced by gas-phase EMF study are anticipated

    Structural Diversity of Protonated Citric Acid-Ammonia Clusters and Its Atmospheric Implication

    No full text
    Various acid–base molecular clusters involving organic species can serve as precursors that play important roles in the formation of an atmospheric aerosol. Due to its structural flexibility and its ability to form multiple hydrogen bonds, citric acid acts as a key species in forming clusters that are critical in the nucleation of related aerosol precursors. Thus, it is provoking to characterize the structures of these clusters at the molecular level. In this paper, protonated citric acid–ammonia clusters of various sizes were generated by electrospray ionization and studied by tandem mass spectrometry. The structures of [(CA)2+NH4]1+ and [(CA)4+NH4]1+ were further characterized by the method of infrared photodissociation (IRPD) spectroscopy. Combined with theoretical calculations, it is found that the most stable structures of the dimeric and tetrameric isomers show the shapes of an ingot and a lantern, respectively. It has been revealed that the temperature has a great effect on the contributions of different isomers for both dimers and tetramers. The dominat isomers are found to have more open structures at higher temperatures, facilitating the growth of clusters through new hydrogen bonds

    Research on the Spatial Network Structure and Influencing Factors of the Allocation Efficiency of Agricultural Science and Technology Resources in China

    No full text
    The allocation efficiency of China’s agricultural science and technology resources (ASTR) varies in different regions and has a complicated spatial distribution pattern. To visually study whether there are correlations and mutual influences between the allocation efficiency of different regions, we use social network analysis methods (SNA). The study found that: (i) China’s allocation efficiency of ASTR has significant spatial correlation and spillover effects. The overall network density is declining. (ii) The spatial correlation network has significant regional heterogeneity. Some eastern provinces play “intermediaries” and “bridges” in the network. (iii) Geographical proximity, differences in economic development levels, industrial structure levels, and differences in urbanization have a significant impact on the formation of spatial association networks

    Homochiral or Heterochiral: A Systematic Study of Threonine Clusters Using a FT ICR Mass Spectrometer

    No full text
    The strong chiral preferences of some magic clusters of amino acids have attracted continually increasing interests due to their unique structures, properties and possible roles in homochirogenesis. However, how chirality can influence the generation and stability of cluster ions in a wild range of cluster sizes is still unknown for most amino acids. In this study, the preference for threonine clusters to form homochiral and heterochiral complex ions has been investigated by electrospray ionization (ESI) mass spectrometry. Abundant cluster [Thrn+mH]m+ ions (7 ≤ n ≤ 78, 1 ≤ m ≤ 5) have been observed for both samples of enantiopure (100% L) and racemic (50:50 L:D) threonine solutions. Further analyses of the spectra show that the [Thr14+2H]2+ ion is characterized by its most outstanding homochiral preference, and [Thr7+H]+ and [Thr8+H]+ ions also clearly exhibit their homochiral preferences. Although most of the triply charged clusters (20 ≤ n ≤ 36) are characterized by heterochiral preferences, the quadruply charged [Thrn+4H]4+ ions (40 ≤ n ≤ 59) have no obvious chiral preference in general. On the other hand, a weak homochiral preference exists for most of the quintuply charged ions observed in the experiment

    Structural Characterization of a Polysaccharide from Gastrodia elata and Its Bioactivity on Gut Microbiota

    No full text
    A novel homogeneous polysaccharide named GEP-1 was isolated and purified from Gastrodia elata (G. elata) by hot-water extraction, ethanol precipitation, and membrane separator. GEP-1, which has a molecular weight of 20.1 kDa, contains a polysaccharide framework comprised of only glucose. Methylation and NMR analysis showed that GEP-1 contained 1,3,6-linked-α-Glcp, 1,4-linked-α-Glcp, 1,4-linked-β-Glcp and 1,4,6-linked-α-Glcp. Interestingly, GEP-1 contained citric acid and repeating p-hydroxybenzyl alcohol as one branch. Furthermore, a bioactivity test showed that GEP-1 could significantly promote the growth of Akkermansia muciniphila (A. muciniphila) and Lacticaseibacillus paracasei (L.paracasei) strains. These results implied that GEP-1 might be useful for human by modulating gut microbiota

    Iron-related gene mutations driving global Mycobacterium tuberculosis transmission revealed by whole-genome sequencing

    No full text
    Abstract Background Iron plays a crucial role in the growth of Mycobacterium tuberculosis (M. tuberculosis). However, the precise regulatory mechanism governing this system requires further elucidation. Additionally, limited studies have examined the impact of gene mutations related to iron on the transmission of M. tuberculosis globally. This research aims to investigate the correlation between mutations in iron-related genes and the worldwide transmission of M. tuberculosis. Results A total of 13,532 isolates of M. tuberculosis were included in this study. Among them, 6,104 (45.11%) were identified as genomic clustered isolates, while 8,395 (62.04%) were classified as genomic clade isolates. Our results showed that a total of 12 single nucleotide polymorphisms (SNPs) showed a positive correlation with clustering, such as Rv1469 (ctpD, C758T), Rv3703c (etgB, G1122T), and Rv3743c (ctpJ, G676C). Additionally, seven SNPs, including Rv0104 (T167G, T478G), Rv0211 (pckA, A302C), Rv0283 (eccB3, C423T), Rv1436 (gap, G654T), ctpD C758T, and etgB C578A, demonstrated a positive correlation with transmission clades across different countries. Notably, our findings highlighted the positive association of Rv0104 T167G, pckA A302C, eccB3 C423T, ctpD C758T, and etgB C578A with transmission clades across diverse regions. Furthermore, our analysis identified 78 SNPs that exhibited significant associations with clade size. Conclusions Our study reveals the link between iron-related gene SNPs and M. tuberculosis transmission, offering insights into crucial factors influencing the pathogenicity of the disease. This research holds promise for targeted strategies in prevention and treatment, advancing research and interventions in this field

    Effects of Dietary L-TRP on Immunity, Antioxidant Capacity and Intestinal Microbiota of the Chinese Mitten Crab (<i>Eriocheir Sinensis</i>) in Pond Culture

    No full text
    L-tryptophan (L-TRP) is an essential amino acid for the normal growth of crustaceans. As a nutritional supplement and antioxidant, L-TRP has the function of immune and antioxidant capacity regulation. From July to November, the effects of L-TRP on the immunity, antioxidant capacity and intestinal microflora of the Chinese mitten crab (Eriocheir sinensis) in pond culture were investigated. After feeding an L-TRP diet for 30 (named as August), 60 (named as September) and 106 (named as November) days, respectively, the activities of the immune and antioxidant enzymes in the hepatopancreas and hemolymph were evaluated, and the intestinal microbiota were profiled via high-throughput Illumina sequencing. The results showed that supplementation of L-TRP significantly increased the activities of AKP in the hepatopancreas in September, and significantly increased the activities of ACP in the hepatopancreas in August and September, and the hemolymph’s ACP activities also significantly increased in August and November (p p p p Cyanobacteria and Desulfobacterota significantly increased in August (p Actinobacteriota significantly decreased in September (p p E. sinensis at the early stage of pond culturing. However, long-term feeding of an L-TRP diet might have no positive impact on the activities of the immune, antioxidant enzymes and intestinal microbiota

    DataSheet1_Structures and growth pathways of AunCln+3- (n ≤ 7) cluster anions.docx

    No full text
    Gold chloride clusters play an important role in catalysis and materials chemistry. Due to the diversity of their species and isomers, there is still a dearth of structural studies at the molecular level. In this work, anions of AunCln+3- and AunCln+5- (n = 2–4) clusters were obtained by laser desorption/ionization mass spectrometry (LDI MS), and the most stable isomers of AunCln+3- were determined after a thorough search and optimization at the TPSSh/aug-cc-pVTZ/ECP60MDF level. The results indicate that all isomers with the lowest energy have a planar zigzag skeleton. In each species, there is one Au(III) atom at the edge connected with four Cl atoms, which sets it from the other Au(I) atoms. Four growth pathways for AunCln+3- (n = 2–7) clusters are proposed (labelled R1, R2, R3 and R4). They are all associated with an aurophilic contact and are exothermic. The binding energies tend to stabilize at ∼ −41 kcal/mol when the size of the cluster increases in all pathways. The pathway R1, which connects all the most stable isomers of the respective clusters, is characterized by cluster growth due to aurophilic interactions at the terminal atom of Au(I) in the zigzag chains. In the pathway of R4 involving Au-Au bonding in its initial structures (n ≤ 3), the distance between intermediate gold atoms grows with cluster size, ultimately resulting in the transfer of the intermediate Au-Au bonding into aurophilic interaction. The size effect on the structure and aurophilic interactions of these clusters will be better understood based on these discoveries, potentially providing new insights into the active but elusive chemical species involved in the corresponding catalytic reactions or nanoparticle synthesis processes.</p
    corecore