76 research outputs found

    Inhibition of protein FAK enhances 5-FU chemosensitivity to gastric carcinoma via p53 signaling pathways

    Get PDF
    Abstract(#br)The small molecule drug 5-fluorouracil (5-FU) is widely used in the treatment for gastric cancer (GC), however, it exerts poor efficacy and is associated with acquired and intrinsic resistance. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays a key role in adhesion, migration, and proliferation of gastric carcinoma cells, suggesting that this kinase may be a promising therapeutic target. Differentially expressed FAK in GC tissue was detected by RT-qPCR and TCGA database analysis. To investigate the biological functions of FAK, loss-of-function experiments were performed. CCK-8 assay, colony formation assay, flow cytometry, dual-luciferase reporter assays, and western blot assays were conducted to determine the underlying mechanisms of FAK in 5-FU chemosensitivity in GC. FAK is overexpressed in GC patients, and positively correlated with poor prognosis. The use of shRNA interference to target FAK decreased proliferation and increased apoptosis of GC cells in vitro. Importantly, FAK silencing enhanced the therapeutic efficacy of 5-FU, leading to reduced tumor growth in vivo . We further demonstrated that FAK silencing increased 5-FU-induced caspase-3 activity, and promoted p53 transcriptional activities. Clinical data also has shown that patients with higher levels of FAK had significantly shorter overall survival (OS) and time to first progression (FP) than those with lower levels of FAK. These findings indicate that FAK plays a critical role in 5-FU chemosensitivity in GC, and the use of FAK inhibitors as an adjunct to 5-FU might be an effective strategy for patients who undergo chemotherapy

    Topologically Conjugate Classifications of the Translation Actions on Compact Connected Lie Groups SU(2)Ă—Tn{\rm SU}(2) \times T^n

    Full text link
    In this article, we focus on the left (translation) actions on noncommutative compact connected Lie groups SU(2)Ă—Tn{\rm SU}(2) \times T^n. We define the rotation vectors of the left actions induced by the elements in the maximal tori of SU(2)Ă—Tn{\rm SU}(2) \times T^n, and utilize rotation vectors to give the complete topologically conjugate classifications of left actions. Algebraic conjugacy and smooth conjugacy are also considered.Comment: 42 page

    Effective norm emergence in cell systems under limited communication

    No full text
    Abstract Background The cooperation of cells in biological systems is similar to that of agents in cooperative multi-agent systems. Research findings in multi-agent systems literature can provide valuable inspirations to biological research. The well-coordinated states in cell systems can be viewed as desirable social norms in cooperative multi-agent systems. One important research question is how a norm can rapidly emerge with limited communication resources. Results In this work, we propose a learning approach which can trade off the agents’ performance of coordinating on a consistent norm and the communication cost involved. During the learning process, the agents can dynamically adjust their coordination set according to their own observations and pick out the most crucial agents to coordinate with. In this way, our method significantly reduces the coordination dependence among agents. Conclusion The experiment results show that our method can efficiently facilitate the social norm emergence among agents, and also scale well to large-scale populations

    Aminoacylation of an unusual tRNA(Cys) from an extreme halophile

    No full text
    The extreme halophile Halobacterium species NRC-1 overcomes external near-saturating salt concentrations by accumulating intracellular salts comparable to those of the medium. This raises the fundamental question of how halophiles can maintain the specificity of protein–nucleic acid interactions that are particularly sensitive to high salts in mesophiles. Here we address the specificity of the essential aminoacylation reaction of the halophile, by focusing on molecular recognition of tRNA(Cys) by the cognate cysteinyl-tRNA synthetase. Despite the high salt environments of the aminoacylation reaction, and despite an unusual structure of the tRNA with an exceptionally large dihydrouridine loop, we show that aminoacylation of the tRNA proceeds with a catalytic efficiency similar to that of its mesophilic counterparts. This is manifested by an essentially identical K(m) for tRNA to those of the mesophiles, and by recognition of the same nucleotide determinants that are conserved in evolution. Interestingly, aminoacylation of the halophile tRNA(Cys) is more closely related to that of bacteria than eukarya by placing a strong emphasis on features of the tRNA tertiary core. This suggests an adaptation to the highly negatively charged tRNA sugar-phosphate backbone groups that are the key elements of the tertiary core

    The Solid State 13C NMR Study of Gamma Radiation of Ethylene-Octene Copolymer

    Get PDF
    Ethylene-octene copolymer (POE) samples exposed to γ-radiation under a series of absorbed doses have been investigated using thermal analysis, sol-gel analysis and solid state 13C nuclear magnetic Resonance (NMR). The chemical shift of POE was assigned and peak evolution as a function of radiation dose was discussed. An obviously evolution is that the peak area of 33.6 ppm decreases as a function of the increase of radiation dose, and at the same time, the peak shape broadens gradually. This indicates that the chain scission occurred between α-C and branch chain C (methine) or between C1 (the sidegroup hexyl) and branch chain C (methane) after radiation. The chain scission is severer with the increase of absorbed dose.The 13C NMR spectra of the corresponding gels confirmed the result. The variation in linewidth of the resonance at 33.6 ppm in samples of POE irradiated to different doses was attributed to information of chain, scission, new cross linking, and crystalline components

    Mendelian Randomization Analysis of the Association of SOCS3 Methylation with Abdominal Obesity

    No full text
    This study was conducted to evaluate the potential causality association of SOCS3 methylation with abdominal obesity using Mendelian randomization. A case–control study, including 1064 participants, was carried out on Chinese subjects aged 18 to 79. MethylTargetTM was used to detect the methylation level for each CpG site of SOCS3, and SNPscan® was applied to measure the single-nucleotide polymorphism (SNP) genotyping. The logistic regression was used to assess the relationship of SOCS3 methylation level and SNP genotyping with abdominal obesity. Three types of Mendelian randomization methods were implemented to examine the potential causality between SOCS3 methylation and obesity based on the SNP of SOCS3 as instrumental variables. SOCS3 methylation levels were inversely associated with abdominal obesity in five CpG sites (effect estimates ranged from 0.786 (Chr17:76356054) to 0.851 (Chr17:76356084)), and demonstrated positively association in 18 CpG sites (effect estimates ranged from 1.243 (Chr17:76354990) to 1.325 (Chr17:76355061)). The causal relationship between SOCS3 methylation and abdominal obesity was found using the maximum-likelihood method and Mendelian randomization method of penalized inverse variance weighted (MR-IVW), and the β values (95% CI) were 5.342 (0.215, 10.469) and 4.911 (0.259, 9.564), respectively. The causality was found between the SOCS3 methylation level and abdominal obesity in the Chinese population

    Investigating the Pathogenic Role of PADI4 in Oesophageal Cancer

    No full text
    <p>PADI4 post-translationally converts peptidylarginine to citrulline. PADI4 can disrupt the apoptotic process via the citrullination of histone H3 in the promoter of p53-target genes. The current study focused on PADI4 expression in various subtypes of oesophageal carcinoma (EC) by immunohistochemistry, western blotting and real time PCR. The study also investigated the effect of bile acid deoxycholate (DCA) on PADI4 expression in Eca-109 cells that originated from EC. Apoptosis and DCA-induced toxicity were analyzed by TUNEL, MTT assay and flow cytometry. Additionally, the present study investigated the correlation between single nucleotide polymorphism (SNP) in PADI4 gene and EC risk in Chinese population using Illumina GoldenGate assay. Compared with paraneoplastic tissues, the transcriptional and translational levels of PADI4 were significantly elevated in oesophageal squamous cell carcinoma (ESCC, n=9) and oesophageal adenocarcinoma (EAC, n=5) tissues. Immunolabeling detected expression of PADI4 in ESCC tissues (98.56%, n=139), EAC samples (87.5%, n=16) and oesophageal small cell undifferentiated carcinoma (91.7%, n=12) but not in normal tissues (0%, n=16). Furthermore, PADI4 levels is positively correlated with the pathological classification of ESCC (p=0.009). PADI4 expression levels were consistent with the number of apoptotic cells in the induced Eca-109 cells. rs10437048 [OR= 0.012831; 95% CI, 0.001746&#126;0.094278; p=1.556&#215;10<sup>-12</sup>] were significantly associated with decreased risk of EC, whereas rs41265997 [OR=12.7; 95% CI, 0.857077&#126;33.207214; p=3.896&#215;10<sup>-8</sup>] were significantly associated with increased risk of EC. rs41265997 in exon 3 of PADI4 gene is non-synonymous and converts ACG to ATG resulting in a threonine /methionine conversion at position 274 of the protein. Haplotypes GC that carries the variant alleles for rs2501796 and rs2477134 was significantly associated with increased risk of EC (frequency=0.085, p=0.0256, OR=2.7). The results suggest that PADI4 expression is related to the tumorigenic process of EC and the DCA-induced apoptosis. The PADI4 gene may be a valid EC susceptibility gene.</p

    Piezo1 in Digestive System Function and Dysfunction

    No full text
    Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1’s cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically
    • …
    corecore