19 research outputs found
Deformation Behavior of Al0.25CoCrFeNi High-Entropy Alloy after Recrystallization
Cold rolling with subsequent annealing can be used to produce the recrystallized structure in high entropy alloys (HEAs). The Al0.25CoCrFeNi HEAs rolled to different final thickness (230, 400, 540, 800, 1000, 1500 μm) are prepared to investigate their microstructure evolutions and mechanical behaviors after annealing. Only the single face-centered cubic phase was obtained after cold rolling and recrystallization annealing at 1100 °C for 10 h. The average recrystallized grain size in this alloy after annealing ranges from 92 μm to 136 μm. The annealed thin sheets show obviously size effects on the flow stress and formability. The yield strength and tensile strength decrease as t/d (thickness/average grain diameter) ratio decreases until the t/d approaches 2.23. In addition, the stretchability (formability) decreases with the decrease of the t/d ratio especially when the t/d ratio is lower than about 6. According to the present results, yield strength can be expressed as a function of the t/d ratio
Revealing the relationship between microstructures, textures, and mechanical behaviors of cold-rolled Al0.1CoCrFeNi high-entropy alloys
Here we reveal and discuss the relationship among microstructures, textures, and mechanical behaviors of Al0.1CoCrFeNi high-entropy alloys (HEAs) after cold rolling and annealing. The initially coarsen grains display profuse lamellar-structured slip bands upon cold rolling to 50% reduction with mostly extending vertically to the rolling direction. Meanwhile, cold rolling facilitates the evolutions of Goss ({011} ) and Brass ({110} ) component textures in the low stacking fault energy (SFE) HEAs accompanying with the formation of deformation twins. Interestingly, the rolling strengthen HEAs exhibit novel anisotropies of yield strength and strain hardening associating more with the direction of the slip lines and twins rather than the rolling-induced preferred orientations, attributing to the easier dislocations glide in between the slip lines and twins than across them. The microstructural characters including dislocation density, slip lines, and twins are quantitatively evaluated, which demonstratesthat the dynamic grain refinement contributes much more for the overall strength, compared to the increased dislocation density. A lower strength (370 MPa for yield and 733 MPa for failure) and exceptional ductility (∼55%) are achieved in the annealed samples with random grain orientations.Peer reviewe
Prediction of Strength and Ductility in Partially Recrystallized CoCrFeNiTi<sub>0.2</sub> High-Entropy Alloy
The mechanical behavior of a partially recrystallized fcc-CoCrFeNiTi0.2 high entropy alloys (HEA) is investigated. Temporal evolutions of the morphology, size, and volume fraction of the nanoscaled L12-(Ni,Co)3Ti precipitates at 800 °C with various aging time were quantitatively evaluated. The ultimate tensile strength can be greatly improved to ~1200 MPa, accompanied with a tensile elongation of ~20% after precipitation. The temporal exponents for the average size and number density of precipitates reasonably conform the predictions by the PV model. A composite model was proposed to describe the plastic strain of the current HEA. As a consequence, the tensile strength and tensile elongation are well predicted, which is in accord with the experimental results. The present experiment provides a theoretical reference for the strengthening of partially recrystallized single-phase HEAs in the future
Methane Combustion over Zeolite-Supported Palladium-Based Catalysts
The emission of methane leads to the increase in the methane concentration in the atmosphere, which not only wastes resources but also intensifies the greenhouse effect and brings about serious environmental problems. Catalytic combustion can completely convert methane into carbon dioxide and water at low temperatures. However, the catalytic activities of the conventional supported palladium catalysts (e.g., Pd/Al2O3 and Pd/ZrO2) are easy to decrease or the two catalysts can even be deactivated under actual harsh reaction conditions (high temperatures, steam- and sulfur dioxide-containing atmospheres, etc.). Recently, noble metal catalysts supported on zeolites with ordered pores and good thermal stability have attracted much attention. This review article summarizes the recent progress on the development and characteristics of zeolite-supported noble metal catalysts for the combustion of methane. The effects of framework structures, silica/alumina ratios, acidity, doping of alkali metals or transition metals, particle sizes and distributions, and their locations of/in the zeolites on methane combustion activity are discussed. The importance of developing high-performance catalysts under realistic operation conditions is highlighted. In addition, the related research work on catalytic methane combustion in the future is also envisioned
Preparation of Highly Transparent (at 450–800 nm) SnO2 Homojunction by Solution Method and Its Photoresponse
High-quality SnO2:Si films and SnO2:10 at.% Ga films were prepared by the solution method. The roughness of films is below 1.08 nm, and possess exceptional transparency (>75%) and decent semiconductor properties. Based on this, the SnO2:Si/SnO2: Ga homojunctions with different Si doping concentrations were prepared. It is found that the conductivity of the SnO2:Si thin film gradually increases, and the rectification characteristics of the homojunction are optimized with increasing Si doping content. The SnO2:15 at.% Si/SnO2:10 at.% Ga homogeneous junction has the best performance, the turn-on voltage is as low as 5.6 V, and it also exhibits good unidirectional conductivity. The photoresponse of the SnO2:15 at.% Si/SnO2:10 at.% Ga homojunction under the lights of red, yellow, and purple was explored respectively. The result shows that the device responds strongly to purple light. Compared with the test results in the dark environment, the device current increases by two orders, which is expected to be applied in the field of near-ultraviolet detection
Generation of an Oocyte-Specific Cas9 Transgenic Mouse for Genome Editing
<div><p>The CRISPR/Cas9 system has been developed as an easy-handle and multiplexable approach for engineering eukaryotic genomes by zygote microinjection of Cas9 and sgRNA, while preparing Cas9 for microinjection is laborious and introducing inconsistency into the experiment. Here, we describe a modified strategy for gene targeting through using oocyte-specific Cas9 transgenic mouse. With this mouse line, we successfully achieve precise gene targeting by injection of sgRNAs only into one-cell-stage embryos. Through comprehensive analysis, we also show allele complexity and off-target mutagenesis induced by this strategy is obviously lower than Cas9 mRNA/sgRNA injection. Thus, injection of sgRNAs into oocyte-specific Cas9 transgenic mouse embryo provides a convenient, efficient and reliable approach for mouse genome editing.</p></div
Environmental embrittlement behavior of high-entropy alloys
High entropy alloys (HEAs), as a new class of structural materials, have attracted extensive interest from numerous metallurgical scientists and engineers. Benefiting from their unique microstructural features and outstanding mechanical performance, HEAs have shown significant potential for applications in many engineering fields, even under extreme conditions. In particular, when exposed to hydrogen and/or intermediate-temperature environments, these HEAs inevitably suffer from severe environmental embrittlement (EE) issues, e.g., hydrogen embrittlement (HE) and intermediate-temperature embrittlement (ITE), resulting in serious premature intergranular failure. In this work, we critically review the state-of-the-art advances of EE in previously reported HEA systems. Particular focus is given to novel strategies to enhance the resistance to EE in different HEAs. Two critical embrittlement phenomena, namely, HE and ITE, are highlighted separately. Finally, we provide perspectives on future research directions and opportunities for EE-resistant HEAs