932 research outputs found
The High Speed Water Tunnel three-component balance
An experimental program was initiated in the High Speed Water Tunnel to measure force coefficients for hydrofoils under cavitating conditions. This program necessitated either a new force balance or a major modification of the existing one. Various balance configurations and pressure seal designs which were considered are described. A balance modification design was selected which consists of an appendage bolted between the existing balance and the water tunnel working section. This appendage alters the basic geometry of the force balance so that the model is now mounted on a parallelogram linkage instead of on a simple pivoted lever. The addition of the parallelogram force table suspension to the old balance renders the modified balance unresponsive to moments which in the old balance, interacted with forces and resulted in errors in the force readings. This modification which is described in detail was accomplished and resulted in a successful force balance capable of accurate measurement of forces on cavitating and noncavitating hydrofoils; and, in fact, it is expected to replace the old force balance for all force measurement work in the High Speed Water Tunnel. The cost and construction time for the balance modification were considerably less than would have been required for an entirely new force balance of comparable accuracy and sensitivity
Cold-air performance of a tip turbine designed to drive a lift fan
Performance was obtained over a range of speeds and pressure ratios for a 0.4 linear scale version of the LF460 lift fan turbine with the rotor radial tip clearance reduced to about 2.5 percent of the rotor blade height. These tests covered a range of speeds from 60 to 140 percent of design equivalent speed and a range of scroll inlet total to diffuser exit static pressure ratios from 2.6 to 4.2. Results are presented in terms of equivalent mass flow, equivalent torque, equivalent specific work, and efficiency
Burrowing apparatus
A soil burrowing mole is described in which a housing has an auger blade wound around a front portion. This portion is rotatable about a housing longitudinal axis relative to an externally finned housing rear portion upon operation of driving means to cause an advance through soil and the like. The housing carries a sensor sensitive to deviation from a predetermined path and to which is coupled means for steering the housing to maintain the path
Soil penetrometer
An auger-type soil penetrometer for burrowing into soil formations is described. The auger, while initially moving along a predetermined path, may deviate from the path when encountering an obstruction in the soil. Alterations and modifications may be made in the structure so that it may be used for other purposes
Research turbine for high temperature core engine application. 1: Cold-airoverall performance of solid scaled turbine
A solid, half-scale model of a 50.8-cm (20-in) research turbine designed for a high temperature core engine application was investigated over a range of speeds and pressure ratios. The results of this test are presented. The effect of rotor blade twist was also investigated. At the design equivalent speed and specific work output, the total efficiency of the turbine with untwisted rotor blades was 87.1 percent; at the same pressure ratio the efficiency of the turbine with twisted rotor blades was 88.0 percent
Cold-air performance of a tip turbine designed to drive a lift fan. 3: Effect of simulated fan leakage on turbine performance
Performance data were obtained experimentally for a 0.4 linear scale version of the LF460 lift fan turbine for a range of scroll inlet total to diffuser exit static pressure ratios at design equivalent speed with simulated fan leakage air. Tests were conducted for full and partial admission operation with three separate combinations of rotor inlet and rotor exit leakage air. Data were compared to the results obtained from previous investigations in which no leakage air was present. Results are presented in terms of mass flow, torque, and efficiency
Cold air performance of a tip turbine designed to drive a lift fan. 2: Partial admission
Partial admission performance was obtained for a 0.4 linear scale version of the LF460 lift fan turbine over a range of speed from 40 to 140 percent of design equivalent speed and a range of scroll inlet total to diffuser exit static pressure ratio from 2.2 to 5.0. The investigation was conducted in two parts, with each part using a different side of the turbine scroll to simulate loss of a gas generator. Each side had an arc of admission of 180. Results are presented in terms of specific work, torque, mass flow, and efficiency
Extendable mast used in one shot soil penetrometer
Penetrometer to test soil characteristics has a piercing head with soil instrumentation equipment attached to an expandable mast actuated by compressed air. The penetrometer gives continuous measurements as the mast pushes the piercing head through the soil
Burst diaphragm protects vacuum vessel from internal pressure transients
Supported dual-mode burst diaphragm protects vacuum vessels from transient internal pressures. It forms the interface between the vacuum in the vessel and an external pressure
Cold-air investigation of a 4 1/2 stage turbine with stage-loading factor of 4.66 and high specific work output. 2: Stage group performance
The stage group performance of a 4 1/2 stage turbine with an average stage loading factor of 4.66 and high specific work output was determined in cold air at design equivalent speed. The four stage turbine configuration produced design equivalent work output with an efficiency of 0.856; a barely discernible difference from the 0.855 obtained for the complete 4 1/2 stage turbine in a previous investigation. The turbine was designed and the procedure embodied the following design features: (1) controlled vortex flow, (2) tailored radial work distribution, and (3) control of the location of the boundary-layer transition point on the airfoil suction surface. The efficiency forecast for the 4 1/2 stage turbine was 0.886, and the value predicted using a reference method was 0.862. The stage group performance results were used to determine the individual stage efficiencies for the condition at which design 4 1/2 stage work output was obtained. The efficiencies of stages one and four were about 0.020 lower than the predicted value, that of stage two was 0.014 lower, and that of stage three was about equal to the predicted value. Thus all the stages operated reasonably close to their expected performance levels, and the overall (4 1/2 stage) performance was not degraded by any particularly inefficient component
- …