1,084 research outputs found
Multipole correlations in low-dimensional f-electron systems
By using a density matrix renormalization group method, we investigate the
ground-state properties of a one-dimensional three-orbital Hubbard model on the
basis of a j-j coupling scheme. For , where is a parameter
to control cubic crystalline electric field effect, one orbital is itinerant,
while other two are localized. Due to the competition between itinerant and
localized natures, we obtain orbital ordering pattern which is sensitive to
, leading to a characteristic change of quadrupole state
into an incommensurate structure. At , all the three orbitals are
degenerate, but we observe a peak at in quadrupole
correlation, indicating a ferro-orbital state, and the peak at in
dipole correlation, suggesting an antiferromagnetic state. We
also discuss the effect of octupole on magnetic anisotropy.Comment: 4 pages, 3 figures, Proceedings of ASR-WYP-2005 (September 27-29,
2005, Tokai
Multipole as -Electron Spin-Charge Density in Filled Skutterudites
It is shown that -electron multipole is naturally defined as spin-charge
one-electron density operator in the second-quantized form with the use of
tensor operator on the analogy of multipole expansion of electromagnetic
potential from charge distribution in electromagnetism. Due to this definition
of multipole, it is possible to determine multipole state from a microscopic
viewpoint on the basis of the standard linear response theory for multipole
susceptibility. In order to discuss multipole properties of filled
skutterudites, we analyze a seven-orbital impurity Anderson model by employing
a numerical renormalization group method. We show our results on possible
multipole states of filled skutterudite compounds.Comment: To appear in the Proceedings of International Conference on "New
Quantum Phenomena in Skutterudite and Related Systems" (September 2007, Kobe,
Japan
Multipole State of Heavy Lanthanide Filled Skutterudites
We discuss multipole properties of filled skutterudites containing heavy
lanthanide Ln from a microscopic viewpoint on the basis of a seven-orbital
Anderson model. For Ln=Gd, in contrast to naive expectation, quadrupole moments
remain in addition to main dipole ones. For Ln=Ho, we find an exotic state
governed by octupole moment. For Ln=Tb and Tm, no significant multipole moments
appear at low temperatures, while for Ln=Dy, Er, and Yb, dipole and
higher-order multipoles are dominant. We briefly discuss possible relevance of
these multipole states with actual materials.Comment: 5 pages, 3 figure
A note on Kerr/CFT and free fields
The near-horizon geometry of the extremal four-dimensional Kerr black hole
and certain generalizations thereof has an SL(2,R) x U(1) isometry group.
Excitations around this geometry can be controlled by imposing appropriate
boundary conditions. For certain boundary conditions, the U(1) isometry is
enhanced to a Virasoro algebra. Here, we propose a free-field construction of
this Virasoro algebra.Comment: 10 pages, v2: comments and references adde
Asteroseismic detection of latitudinal differential rotation in 13 Sun-like stars
The differentially rotating outer layers of stars are thought to play a role
in driving their magnetic activity, but the underlying mechanisms that generate
and sustain differential rotation are poorly understood. We report the
measurement of latitudinal differential rotation in the convection zones of 40
Sun-like stars using asteroseismology. For the most significant detections, the
stars' equators rotate approximately twice as fast as their mid-latitudes. The
latitudinal shear inferred from asteroseismology is much larger than
predictions from numerical simulations.Comment: 45 pages, 11 figures, 4 tables, published in Scienc
A near-NHEK/CFT correspondence
We consider excitations around the recently introduced near-NHEK metric
describing the near-horizon geometry of the near-extremal four-dimensional Kerr
black hole. This geometry has a U(1)_L x U(1)_R isometry group which can be
enhanced to a pair of commuting Virasoro algebras. We present boundary
conditions for which the conserved charges of the corresponding asymptotic
symmetries are well defined and non-vanishing and find the central charges
c_L=12J/hbar and c_R=0 where J is the angular momentum of the black hole.
Applying the Cardy formula reproduces the Bekenstein-Hawking entropy of the
black hole. This suggests that the near-extremal Kerr black hole is
holographically dual to a non-chiral two-dimensional conformal field theory.Comment: 11 pages, v2: references updated, adde
Time evolution of entanglement entropy from a pulse
We calculate the time evolution of the entanglement entropy in a 1+1 CFT with
a holographic dual when there is a localized left-moving packet of energy
density. We find the gravity result agrees with a field theory result derived
from the transformation properties of R\'enyi entropy. We are able to reproduce
behavior which qualitatively agrees with CFT results of entanglement entropy of
a system subjected to a local quench. In doing so we construct a finite
diffeomorphism which tales three-dimensional anti-de Sitter space in the
Poincar\'e patch to a general solution, generalizing the diffeomorphism that
takes the Poincar\'e patch a BTZ black hole. We briefly discuss the calculation
of correlation functions in these backgrounds and give results at large
operator dimension.Comment: 18 pages, 6 figure
Perturbative stability of the QCD analysis of DIS data
We perform pQCD analysis of the existing DIS data for charged leptons with
account of corrections up to the NNLO. The parton distributions, value of
strong coupling constant, and high-twist terms are extracted and their
stability with respect to account of the NNLO corrections is analyzed. All the
quantities are generally stable within their experimental errors. Obtained
value of the strong coupling constant is with a guess .Comment: 4 pages, LATEX, 3 figures (EPS). Talk presented at the 37th
Rencontres de Moriond, QCD and Hadronic Interactions, Les Arcs 1800 (France),
March 16-23 200
Finite Temperature Systems of Brane-Antibrane on a Torus
In order to study the thermodynamic properties of brane-antibrane systems in
the toroidal background, we compute the finite temperature effective potential
of tachyon T in this system on the basis of boundary string field theory. We
first consider the case that all the radii of the target space torus are about
the string scale. If the Dp-antiDp pair is extended in all the non-compact
directions, the sign of the coefficient of |T|^2 term of the potential changes
slightly below the Hagedorn temperature. This means that a phase transition
occurs near the Hagedorn temperature. On the other hand, if the Dp-antiDp pair
is not extended in all the non-compact directions, the coefficient is kept
negative, and thus a phase transition does not occur. Secondly, we consider the
case that some of the radii of the target space torus are much larger than the
string scale and investigate the behavior of the potential for each value of
the radii and the total energy. If the Dp-antiDp pair is extended in all the
non-compact directions, a phase transition occurs for large enough total
energy.Comment: 23 pages, 3 figures, minor errors corrected, version to appear in
JHE
On the CFT duals for near-extremal black holes
We consider Kerr-Newman-AdS-dS black holes near extremality and work out the
near-horizon geometry of these near-extremal black holes. We identify the exact
U(1)_L x U(1)_R isometries of the near-horizon geometry and provide boundary
conditions enhancing them to a pair of commuting Virasoro algebras. The
conserved charges of the corresponding asymptotic symmetries are found to be
well defined and non-vanishing and to yield central charges c_L\neq0 and c_R=0.
The Cardy formula subsequently reproduces the Bekenstein-Hawking entropy of the
black hole. This suggests that the near-extremal Kerr-Newman-AdS-dS black hole
is holographically dual to a non-chiral two-dimensional conformal field theory.Comment: 11 page
- …