31 research outputs found

    Filling dependence of a new type of charge ordered liquid on a triangular lattice system

    Full text link
    We study the recently reported characteristic gapless charge ordered state in a spinless fermion system on a triangular lattice under strong inter-site Coulomb interactions. In this state the charges are spontaneously divided into solid and liquid component, and the former solid part aligns in a Wigner crystal manner while the latter moves among them like a pinball. We show that such charge ordered liquid is stable over a wide range of filling, 1/3<n<2/31/3<n<2/3, and examine its filling dependent nature.Comment: 3 pages 3 figure

    Self-Consistent Second Order Perturbation Theory for the Hubbard Model in Two Dimensions

    Full text link
    We apply self-consistent second order perturbation theory (SCSOPT) with respect to the on-site repulsive interaction U to study the Hubbard model in two dimensions. We investigate single particle properties of the model over the entire doping range at zero temperature. It is shown that as doping decreases toward half-filling ω\omega-mass enhancement factor increases, while k-mass enhancement factor decreases. The increase in ω\omega-mass enhancement factor is larger than the decrease in k-mass enhancement factor, so that total-mass is larger than that in the non-interacting case. When particle number density per unit cell n is given by 0.64<n<1.0 interaction enhances anisotropy of the Fermi surface, whereas at lower densities n<0.64 interaction suppresses anisotropy of it. Due to the decrease in k-mass enhancement factor the density of states (DOS) at the Fermi level is suppressed. It is possible to understand the results within the framework of the weak coupling Fermi liquid theory.Comment: 8 pages, 12 embedded EPS figures, to appear in J. Phys. Soc. Jpn. Vol. 68-3 (1999

    Relevance of quantum fluctuations in the Anderson-Kondo model

    Full text link
    We study a localized spin coupled to an Anderson impurity to model the situation found in higher transition metal or rare earth compounds like e.g.\ LaMnO3_3 or Gd monopnictides. We find that, even for large quantum numbers of the localized spin, quantum fluctuations play an essential role for the case of ferromagnetic coupling between the spin and the impurity levels. For antiferromagnetic coupling, a description in terms of a classical spin is appropriate

    Perturbation study on the spin and charge susceptibilities of the two-dimensional Hubbard model

    Full text link
    We investigate the spin and charge susceptibilities of the two-dimensional Hubbard model based upon the perturbative calculation in the strength of correlation UU. For UU comparable to a bare bandwidth, the charge susceptibility decreases near the half-filling as hole-doping approaches zero. This behavior suggesting the precursor of the Mott-Hubbard gap formation cannot be obtained without the vertex corrections beyond the random phase approximation. In the low-temperature region, the spin susceptibility deviates from the Curie-Weiss-like law and finally turns to decrease with the decrease of temperature. This spin-gap-like behavior is originating from the van Hove singularity in the density of states.Comment: Revtex file + 11 figures, to appear in Phys. Rev.

    Dynamical mean field theory for transition temperature and optics of CMR manganites

    Full text link
    A tight binding parametrization of local spin density functional band theory is combined with a dynamical mean field treatment of correlations to obtain a theory of the magnetic transition temperature, optical conductivity and T=0 spinwave stiffness of a minimal model for the pseudocubic metallic CMRCMR manganites such a La1XSrxMnO3La_{1-X}Sr_{x}MnO_{3}. The results indicate that previous estimates of TcT_{c} obtained by one of us (Phys. Rev. \textbf{B61} 10738-49 (2000)) are in error, that in fact the materials are characterized by Hunds coupling J1.5eVJ\approx 1.5eV, and that magnetic-order driven changes in the kinetic energy may not be the cause of the observed 'colossal' magnetoresistive and multiphase behavior in the manganites, raising questions about our present understanding of these materials.Comment: Published version; 10 pages, 9 figure

    Variational Mean Field approach to the Double Exchange Model

    Get PDF
    It has been recently shown that the double exchange Hamiltonian, with weak antiferromagnetic interactions, has a richer variety of first and second order transitions than previously anticipated, and that such transitions are consistent with the magnetic properties of manganites. Here we present a thorough discussion of the variational Mean Field approach that leads to the these results. We also show that the effect of the Berry phase turns out to be crucial to produce first order Paramagnetic-Ferromagnetic transitions near half filling with transition temperatures compatible with the experimental situation. The computation relies on two crucial facts: the use of a Mean Field ansatz that retains the complexity of a system of electrons with off-diagonal disorder, not fully taken into account by the Mean Field techniques, and the small but significant antiferromagnetic superexchange interaction between the localized spins.Comment: 13 pages, 11 postscript figures, revte

    Ground state of the three-band Hubbard model

    Full text link
    The ground state of the two-dimensional three-band Hubbard model in oxide superconductors is investigated by using the variational Monte Carlo method. The Gutzwiller-projected BCS and spin- density wave (SDW) functions are employed in the search for a possible ground state with respect to dependences on electron density. Antiferromagnetic correlations are considerably enhanced near half-filling. It is shown that the d-wave state may exist away from half-filling for both the hole and electron doping cases. The overall structure of the phase diagram obtained by the calculations qualitatively agrees with experimental indications. The superconducting condensation energy is in reasonable agreement with the experimental value obtained from specific heat and critical magnetic field measurements for optimally doped samples. The inhomogeneous SDW state is also examined near 1/8-hole doping.Comment: 10 pages, 17 figure

    Magnetic, orbital and charge ordering in the electron-doped manganites

    Full text link
    The three dimensional perovskite manganites in the range of hole-doping x>0.5x > 0.5 are studied in detail using a double exchange model with degenerate ege_g orbitals including intra- and inter-orbital correlations and near-neighbour Coulomb repulsion. We show that such a model captures the observed phase diagram and orbital-ordering in the intermediate to large band-width regime. It is argued that the Jahn-Teller effect, considered to be crucial for the region x<0.5x<0.5, does not play a major role in this region, particularly for systems with moderate to large band-width. The anisotropic hopping across the degenerate ege_g orbitals are crucial in understanding the ground state phases of this region, an observation emphasized earlier by Brink and Khomskii. Based on calculations using a realistic limit of finite Hund's coupling, we show that the inclusion of interactions stabilizes th e C-phase, the antiferromagnetic metallic A-phase moves closer to x=0.5x=0.5 while th e ferromagnetic phase shrinks in agreement with recent observations. The charge ordering close to x=0.5x=0.5 and the effect of reduction of band-width are also outlined. The effect of disorder and the possibility of inhomogeneous mixture of competing states have been discussed.Comment: 42 pages, 16 figure
    corecore