8 research outputs found

    Precursor phase with full phonon softening above the charge-density-wave phase transition in 2H2H-TaSe2_2

    Full text link
    Research on charge-density-wave (CDW) ordered transition-metal dichalcogenides continues to unravel new states of quantum matter correlated to the intertwined lattice and electronic degrees of freedom. Here, we report an inelastic x-ray scattering investigation of the lattice dynamics of the canonical CDW compound 2H2H-TaSe2_2 complemented by angle-resolved photoemission spectroscopy. Our results rule out the central-peak scenario for the CDW transition in 2H2H-TaSe2_2 and provide evidence for a novel precursor phase above the CDW transition temperature TCDWT_{CDW}. The phase at temperatures between T∗ (=128.7 ,K)T^{*}\,(= 128.7\,,\rm{K}) and TCDW (=121.3 K)T_{CDW}\,(= 121.3\,\rm{K}) is characterized by a fully softened phonon mode and medium-range ordered (ξcorr=100 A˚−200 A˚)\xi_{corr} = 100\,\rm{\mathring{A}}- 200\,\rm{\mathring{A}}) static CDW domains. Only TCDWT_{CDW} is detectable in our photoemission experiments. Thus, 2H2H-TaSe2_2 exhibits structural before electronic static order and emphasizes the important lattice contribution to CDW transitions

    Precursor region with full phonon softening above the charge-density-wave phase transition in 2H-TaSe2

    Get PDF
    Research on charge-density-wave (CDW) ordered transition-metal dichalcogenides continues to unravel new states of quantum matter correlated to the intertwined lattice and electronic degrees of freedom. Here, we report an inelastic x-ray scattering investigation of the lattice dynamics of the canonical CDW compound 2H-TaSe2 complemented by angle-resolved photoemission spectroscopy and density functional perturbation theory. Our results rule out the formation of a central-peak without full phonon softening for the CDW transition in 2H-TaSe2 and provide evidence for a novel precursor region above the CDW transition temperature TCDW, which is characterized by an overdamped phonon mode and not detectable in our photoemission experiments. Thus, 2H-TaSe2 exhibits structural before electronic static order and emphasizes the important lattice contribution to CDW transitions. Our ab-initio calculations explain the interplay of electron-phonon coupling and Fermi surface topology triggering the CDW phase transition and predict that the CDW soft phonon mode promotes emergent superconductivity near the pressure-driven CDW quantum critical point
    corecore