98 research outputs found

    The impact and surgeon perceptions of the suspension of the CE certification of MAGEC devices on clinical practice

    Get PDF
    MAGnetic Expansion Control (MAGEC) rods are used in the surgical treatment of children with early onset scoliosis. The magnetically controlled lengthening mechanism enables rod distractions without the need for repeated invasive surgery. The CE certification of these devices was suspended in March 2021 due, primarily, to performance evidence gaps in the documents provided by the manufacturer to regulators and notified bodies. MAGEC rods are therefore not permitted for use in countries requiring CE marking. This was a survey of 18 MAGEC rod surgeons in the UK about their perception of the impact of the CE suspension on the clinical management of their patients. Unsurprisingly, virtually all perceived a negative impact, reflecting the complexity of this patient group. Reassuringly, these surgeons are highly experienced in alternative treatment methods

    Method for the location of primary wear scars from retrieved metal on metal hip replacements

    Get PDF
    Retrieved metal-on-metal acetabular cups are valuable resources in investigating the wear behaviour of failed hip implants, but adequate methods to do so are lacking. To further contribute to addressing this issue, we developed a method to detect the in vivo location of the primary wear scar of an explanted cup

    Does diametrical clearance influence the wear of Pinnacle hip implants?

    Get PDF
    Aims: The optimum clearance between the bearing surfaces of hip arthroplasties is unknown. Theoretically, to minimize wear, it is understood that clearances must be low enough to maintain optimal contact pressure and fluid film lubrication, while being large enough to allow lubricant recovery and reduce contact patch size. This study aimed to identify the relationship between diametrical clearance and volumetric wear, through the analysis of retrieved components. / Methods: A total of 81 metal-on-metal Pinnacle hips paired with 12/14 stems were included in this study. Geometrical analysis was performed on each component, using coordinate and roundness measuring machines. The relationship between their as-manufactured diametrical clearance and volumetric wear was investigated. The Mann-Whitney U test and unpaired t-test were used, in addition to calculating the non-parametric Spearman's correlation coefficient, to statistically evaluate the acquired data. / Results: The hips in this study were found to have had a median unworn diametrical clearance of 90.31 μm (interquartile range (IQR) 77.59 to 97.40); 32% (n = 26) were found to have been below the manufacturing tolerance. There was no correlation found between clearance and bearing (rs = -0.0004, p = 0.997) or taper (rs = 0.0048, p = 0.966) wear rates. The wear performance of hips manufactured within and below these specifications was not significantly different (bearing: p = 0.395; taper: p = 0.653). Pinnacles manufactured from 2007 onwards had a greater prevalence of bearing clearance below tolerance (p = 0.004). / Conclusion: The diametrical clearance of Pinnacle hips did not influence their wear performance, even when below the manufacturing tolerance. The optimum clearance for minimizing hip implant wear remains unclear

    Quantifying material loss from the bearing surfaces of retrieved hip replacements: Method validation

    Get PDF
    Computational methods used to quantify wear in failed hip arthroplasties are often limited by human and sampling errors. An automated software solution has been developed to overcome these shortcomings. The overarching aim of the current study was to validate this method through a comparison with gravimetric measurements. Seventy-two different wear volumes were quantified to within a mean error of 0.14 mm3 and 0.10 mm3 of gravimetric results for simulated cup and head components, respectively. This approach had an improved accuracy, repeatability and reproducibility over a commonly used, commercially available software solution, which bears many of the common sources of error

    Comparative analysis of current 3D printed acetabular titanium implants

    Get PDF
    BACKGROUND: The design freedom allowed by three-dimensional (3D) printing enables the production of acetabular off-the-shelf cups with complex porous structures. The only studies on these designs are limited to clinical outcomes. Our aim was to analyse and compare the designs of different 3D printed cups from multiple manufacturers (Delta TT, Trident II Tritanium and Mpact 3D Metal). METHODS: We analysed the outer surface of the cups using scanning electron microscopy (SEM) and assessed clinically relevant morphometric features of the lattice structures using micro-computed tomography (micro-CT). Dimensions related to the cup wall (solid, lattice and overall thickness) were also measured. Roundness and roughness of the internal cup surface were analysed with coordinate measuring machine (CMM) and optical profilometry. RESULTS: SEM showed partially molten titanium beads on all cups, significantly smaller on Trident II (27 μm vs ~ 70 μm, p < 0.0001). We found a spread of pore sizes, with median values of 0.521, 0.841 and 1.004 mm for Trident II, Delta TT and Mpact, respectively. Trident II was also significantly less porous (63%, p < 0.0001) than the others (Delta TT 72.3%, Mpact 76.4%), and showed the thinnest lattice region of the cup wall (1.038 mm, p < 0.0001), while Mpact exhibited the thicker solid region (4.880 mm, p < 0.0044). Similar roundness and roughness of the internal cup surfaces were found. CONCLUSION: This was the first study to compare the designs of different 3D printed cups. A variability in the morphology of the outer surface of the cups and lattice structures was found. The existence of titanium beads on 3D printed parts is a known by-product of the manufacturing process; however, their prevalence on acetabular cups used in patients is an interesting finding, since these beads may potentially be released in the body

    The accuracy and precision of acetabular implant measurements from CT imaging

    Get PDF
    The placement of acetabular implant components determines the short- and long-term outcomes of total hip replacement (THR) and a number of tools have been developed to assist the surgeon in achieving cup orientation to match the surgical plan. However, the accuracy and precision of 3D-CT for the measurement of acetabular component position and orientation is yet to be established. To investigate this, we compared measurements of cobalt chrome acetabular components implanted into 2 different bony pelvic models between a coordinate measuring Faro arm and 3 different low dose CT images, including 3D-CT, 2D anterior pelvic plane (APP) referenced CT and 2D scanner referenced (SR) CT. Intra-observer differences were assessed using the Intraclass correlation coefficient (ICC). The effect of imaging the pelvis positioned in 3 different orientations within the CT scanner was also assessed. The measured parameters were the angles of inclination and version. 3D-CT measurements were found to closely match the “true values” of the component position measurements, compared with the 2D-CT methods. ICC analysis also showed good agreement between the coordinate measuring arm (CMA) and 3D-CT but poor agreement between the 2D SR method, in the results from two observers. When using the coordinate system of the CT scanner, the measurements consistently produced the greatest error; this method yielded values up to 34° different from the reference digitising arm. However, the difference between the true inclination and version angles and those measured from 3D APP CT was below half a degree in all cases. We concluded that low radiation dose 3D-CT is a validated reference standard for the measurement of acetabular cup orientation

    Are all metal-on-metal hip revision operations contributing to the National Joint Registry implant survival curves? : a study comparing the London Implant Retrieval Centre and National Joint Registry datasets

    Get PDF
    AIMS: The National Joint Registry for England, Wales and Northern Ireland (NJR) has extended its scope to report on hospital, surgeon and implant performance. Data linkage of the NJR to the London Implant Retrieval Centre (LIRC) has previously evaluated data quality for hip primary procedures, but did not assess revision records. METHODS: We analysed metal-on-metal hip revision procedures performed between 2003 and 2013. A total of 69 929 revision procedures from the NJR and 929 revised pairs of components from the LIRC were included. RESULTS: We were able to link 716 (77.1%) revision procedures on the NJR to the LIRC. This meant that 213 (22.9%) revision procedures at the LIRC could not be identified on the NJR. We found that 349 (37.6%) explants at the LIRC completed the full linkage process to both NJR primary and revision databases. Data completion was excellent (> 99.9%) for revision procedures reported to the NJR. DISCUSSION: This study has shown that only approximately one third of retrieved components at the LIRC, contributed to survival curves on the NJR. We recommend prospective registry-retrieval linkage as a tool to feedback missing and erroneous data to the NJR and improve data quality. TAKE HOME MESSAGE: Prospective Registry - retrieval linkage is a simple tool to evaluate and improve data quality on the NJR. Cite this article: Bone Joint J 2016;98-B:33-9

    Analysis of bearing wear, whole blood and synovial fluid metal ion concentrations and histopathological findings in patients with failed ASR hip resurfacings

    Get PDF
    Background Adverse Reaction to Metal Debris (ARMD) is still a major reason for revision surgeries in patients with metal-on-metal (MoM) hip replacements. ARMD consists of a wide range of alterations in periprosthetic tissues, most important of which are metallosis, inflammation, pseudotumors and necrosis. Studies investigating histopathological findings and their association to implant wear or indirect measures of wear have yielded inconsistent results. Therefore, we aimed to investigate bearing surface wear volume, whole blood and synovial fluid metal ion concentrations, histopathological findings in periprosthetic tissues and their associations. Methods Seventy-eight patients with 85 hips revised for ARMD were included in the study. Prior to revision surgery, all patients had whole blood chromium and cobalt ion levels assessed. In revision surgery, a synovial fluid sample was taken and analyzed for chromium and cobalt. Periprosthetic tissue samples were taken and analyzed for histopathological findings. Explanted implants were analyzed for bearing wear volume of both acetabular cup and femoral head components. Results Volumetric wear of the failed components was highly variable. The total wear volume of the head and cup had a strong correlation with whole blood chromium and cobalt ion concentrations (Cr: ρ = 0.80, p < 0.001 and Co: ρ = 0.84, p < 0.001) and a bit weaker correlation with fluid chromium and cobalt ion concentrations (Cr: ρ = 0.50, p < 0.01 and Co: ρ = 0.41, p = 0.027). Most tissues displayed only low-to-moderate amounts of macrophages and lymphocytes. Total wear volume correlated with macrophage sheet thickness (ρ = 0.25, p = 0.020) and necrosis (ρ = 0.35, p < 0.01). Whole blood chromium and cobalt ion concentrations had similar correlations. Lymphocyte cuff thickness did not correlate with either total wear volume or whole blood metal ion concentrations, but correlated with the grade of necrosis. Conclusions Bearing wear volume correlated with blood metal ion levels and the degree of necrosis and macrophage infiltration in periprosthetic tissues suggesting a dose-response relationship. Whole blood metal ion levels are a useful tool for clinician to estimate bearing wear and subsequent tissue response

    Comparative retrieval analysis of antioxidant polyethylene: bonding of vitamin-E does not reduce in-vivo surface damage

    Get PDF
    BACKGROUND: With the Persona® knee system a new polyethylene formulation incorporating vitamin-E which aims to reduce oxidation and maintain wear resistance was introduced. Although in-vitro studies have demonstrated positive effects of the vitamin-E antioxidants on UHMWPE, no retrieval study has looked at polyethylene damage of this system yet. It was the aim to investigate the in-vivo performance of this new design, by comparing it with its predecessor in retrieval analysis. METHODS: 15 NexGen® and 8 Persona® fixed-bearing implants from the same manufacturer (Zimmer Biomet) were retrieved from two knee revision centres. For retrieval analysis, a macroscopic analysis of polyethylene using a peer-reviewed damage grading method was used (Hood-score). The roughness of all articulating metal components was measured using a contact profilometer. The reason(s) for TKA revision were recorded. Statistical analyses (t-test) were performed to investigate differences between the two designs. RESULTS: The mean Hood score for Persona® inserts was 109.3 and for NexGen® 115.1 without significant differences between the two designs. Results from the profilometer revealed that Persona® and NexGen® femoral implants showed an identical mean surface roughness of 0.14 μm. The Persona® tibial tray showed a significantly smoother surface (0.06 μm) compared to the NexGen® (0.2 μm; p < 0.001). Both Hood score and surface roughness were influenced by the reasons for revision (p < 0.01). CONCLUSIONS: The bonding of the antioxidant vitamin-E to the PE chain used in the novel Persona® knee system does not reduce in-vivo surface damage compared to highly crosslinked PE without supplemented vitamin-E used in its predecessor knee system NexGen®. However, the Persona® titanium alloy tibial tray showed a significantly smoother surface in comparison to the NexGen® titanium alloy tibial tray. This study provides first retrieval findings of a novel TKA design and may help to understand how the new Persona® anatomic knee system performs in vivo

    Retrieval analysis of ceramic-coated metal-on-polyethylene total hip replacements

    Get PDF
    PURPOSE: Ceramic coatings have been used in metal-on-polyethylene (MOP) hips to reduce the risk of wear and also infection; the clinical efficacy of this remains unclear. This retrieval study sought to better understand the performance of coated bearing surfaces. METHODS: Forty-three coated MOP components were analysed post-retrieval for evidence of coating loss and gross polyethylene wear. Coating loss was graded using a visual semi-quantitative protocol. Evidence of gross polyethylene wear was determined by radiographic analysis and visual inspection of the retrieved implants. RESULTS: All components with gross polyethylene wear (n = 10) were revised due to a malfunctioning acetabular component; 35 % (n = 15) of implants exhibited visible coating loss and the incidence of polyethylene wear in samples with coating loss was 54 %, significantly (p = 0.02) elevated compared to samples with intact coatings (14 %). CONCLUSIONS: In this study we found evidence of coating loss on metal femoral heads which was associated with increased wear of the corresponding polyethylene acetabular cups
    corecore