76 research outputs found

    Electrochemical kinetics:a surface-science supported picture of hydrogen electrochemistry on Ru(0001) and Pt/Ru(0001)

    Get PDF
    In this short review, we compare the kinetics of hydrogen desorption in vacuum to those involved in the electrochemical hydrogen evolution/oxidation reactions (HER/HOR) at two types of atomically smooth model surfaces: bare Ru(0001), and the same surface covered by a 1.1 atomic layer thick Pt film. Low/high H2 (D2) desorption rates at room temperature in vacuum quantitatively correspond to low/high exchange current densities for the HOR/HER in electrochemistry. In view of the “volcano plot” concept, these represent two surfaces that adsorb hydrogen atoms, Had, too strongly and too weakly, respectively. Atomically smooth, vacuum annealed model surfaces are the closest approximation to the idealised slab geometries typically studied by density functional theory (DFT). A predictive volcano plot based on DFT-based adsorption energies for the Had intermediates agrees well with the experiments if two things are considered: (i) the steady-state coverage of Had intermediates and (ii)local variations in film thickness. The sluggish HER/HOR kinetics of Ru(0001) allows for excellent visibility of cyclic voltammetry (CV) features even in H2 saturated solution. The CV switches between a Had and a OHad/Oad dominated regime, but the presence of H2 in the electrolyte increases the Had dominated potential window by a factor of two. Whereas in plain electrolyte two electrochemical adsorption processes compete in forming adlayers, it is one electrochemical and one chemical one in the case of H2 saturated electrolyte. We demonstrate and quantitatively explain that dissociative H2 adsorption is more important than H+ discharge for Had formation in the low potential regime on Ru(0001)

    Ultrahigh vacuum and electrocatalysis:the powers of quantitative surface imaging

    Get PDF
    We highlight the impact of Ultrahigh Vacuum (UHV)-born surface science on modern electrocatalysis. The microscopic, atomic level picture of surface adsorption and reaction, which was developed in the surface science community in decades of systematic research on single crystals in UHV, has meanwhile become state-of-the-art also in electrochemistry. For the example of CO on Pt(111) single crystals, which has been extensively studied at the solid/gas and the solid/liquid interface using atomic resolution scanning tunnelling microscopy (STM), we highlight how both interfaces may have even more in common than often assumed. We then illustrate how planar model surfaces such as mono- and bimetallic single crystals and surface alloys, prepared and thoroughly analysed in UHV, enabled a systematic search for improved electrocatalysts. Surface alloys, thermodynamically more stable than foreign metal islands, are a particularly important sub-group of model surfaces, which so far have only been fabricated in UHV. We also flag that model surfaces may not always assume the structure anticipated for the respective experiment, regardless of their preparation in UHV or by electrochemical methods. “Accidental” surface alloying may be more common than often assumed, leading to misinterpretations of the structure-property relationships targeted in many model studies. We highlight that controlled surface alloy formation should be a key step in any model study looking at bimetallic systems in order to get an idea what the effect of unintended alloying could possibly be, and to cross-check whether alloyed surfaces may potentially be the better electrocatalysts in the first place

    Lithium-oxygen cells:an analytical model to explain the key features in the discharge voltage profiles

    Get PDF
    Sodium-oxygen Lithium-oxygen (Li-O2) cells are popular due to their potentially high energy density. A characteristic fingerprint of a given cell is the voltage profile during constant-current discharge. We suggest that the typical initial dip and the following increase of the voltage result from a temporary increase and slow decrease in the concentration of dissolved superoxide, respectively, feeding into the Nernst equation. The steady-state superoxide concentration decreases as the surface area of the solid precipitation product (Li2O2) increases. Importantly, these products bury the electrochemically active carbon surface. Assuming that the electrochemical step only occurs on bare carbon, the Tafel equation provides an expression for the increasing overpotential as a result of the shrinking effective electrode area. This boils the discharge voltage profile down to the sum of two logarithms, grasping all relevant features in recorded discharge voltage profiles

    Catalysing surface film formation

    Get PDF
    The solid electrolyte interphase that forms on graphite anodes plays a vital role in the performance of lithium-ion batteries. Now research shows that the formation of lithium fluoride deposits — one of the main components of the solid electrolyte interphase — is strongly influenced by the electrocatalytic activity of the anode

    Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries

    Get PDF
    Nanomaterials as anode for lithium-ion batteries (LIB) have gained widespread interest in the research community. However, scaling up and processibility are bottlenecks to further commercialization of these materials. Here, we report that bulk antimony sulfide with a size of 10-20 mu m exhibits a high capacity and stable cycling of 800 mAh g(-1). Mechanical and chemical stabilities of the electrodes are ensured by an optimal electrode-electrolyte system design, with a polyimide-based binder together with fluoroethylene carbonate in the electrolyte. The polyimide binder accommodates the volume expansion during alloying process and fluoroethylene carbonate suppresses the increase in charge transfer resistance of the electrodes. We observed that particle size is not a major factor affecting the charge-discharge capacities, rate capability and stability of the material. Despite the large particle size, bulk antimony sulfide shows excellent rate performance with a capacity of 580 mAh g(-1) at a rate of 2000 mA g(-1)

    On battery recovery effect in wireless sensor nodes

    Get PDF
    With the perennial demand for longer runtime of battery-powered Wireless Sensor Nodes (WSNs), several techniques have been proposed to increase the battery runtime. One such class of techniques exploiting the battery recovery effect phenomenon claims that performing an intermittent discharge instead of a continuous discharge will increase the usable battery capacity. Several works in the areas of embedded systems and wireless sensor networks have assumed the existence of this recovery effect and proposed different power management techniques in the form of power supply architectures (multiple battery setup) and communication protocols (burst mode transmission) in order to exploit it. However, until now, a systematic experimental evaluation of the recovery effect has not been performed with real battery cells, using high accuracy battery testers to confirm the existence of this recovery phenomenon. In this paper, a systematic evaluation procedure is developed to verify the existence of this battery recovery effect. Using our evaluation procedure we investigated Alkaline, Nickel-Metal Hydride (NiMH) and Lithium-Ion (Li-Ion) battery chemistries, which are commonly used as power supplies for WSN applications. Our experimental results do not show any evidence of the aforementioned recovery effect in these battery chemistries. In particular, our results show a significant deviation from the stochastic battery models, which were used by many power management techniques. Therefore, the existing power management approaches that rely on this recovery effect do not hold in practice. Instead of a battery recovery effect, our experimental results show the existence of the rate capacity effect, which is the reduction of usable battery capacity with higher discharge power, to be the dominant electrochemical phenomenon that should be considered for maximizing the runtime of WSN applications. We outline power management techniques that minimize the rate capacity effect in order to obtain a higher energy output from the battery

    Suppressing vertical displacement of lithiated silicon particles in high volumetric capacity battery electrodes

    Get PDF
    Silicon is a potential high-capacity anode material for lithium-ion batteries. However, the large volume expansion of the material remains a bottleneck to its commercialization. Many studies were devoted to nanostructured silicon composites with voids to accommodate the volume expansion. Yet, full capability of silicon cannot be utilized because of the low volumetric capacity of these nanostructured electrodes. Here, we re-design dense silicon electrodes with three times the volumetric capacity of graphite by monitoring and limiting thickness changes of the electrodes. In-situ electrochemical dilatometry reveals that volume change is typically non-linear with state of charge, and highly affected by electrode composition. One key problem is the vertical displacement of the silicon particles by many times their own diameter during lithiation, which leads to irreversible detachment of active particles and increased porosity of the overall electrode for a weak binder. Better reversibility in electrode thickness change is achieved by using polyimide with higher modulus and larger ultimate elongation as the binder, resulting in better cycle stability

    Voltage hysteresis during lithiation/delithiation of graphite associated with meta-stable carbon stackings

    Get PDF
    Cell voltage is a fundamental quantity used to monitor and control Li-ion batteries. The open circuit voltage (OCV) is of particular interest as it is believed to be a thermodynamic quantity, free of kinetic effects and history and, therefore, “simple” to interpret. Here we show that the OCV characteristics of graphite show hysteresis between charge and discharge that do not solely originate from Li dynamics and that the OCV is in fact history dependent. Combining first-principles calculations with temperature-controlled electrochemical measurements, we identify a residual hysteresis that persists even at elevated temperatures of greater than 50 °C due to differences in the phase succession between charge and discharge. Experimental entropy profiling, as well as energies and volume changes determined from first-principles calculations, suggest that the residual hysteresis is associated with different host lattice stackings of carbon and is related to Li disorder across planes in stage II configurations

    Pushing the boundaries of lithium battery research with atomistic modelling on different scales

    Get PDF
    Computational modelling is a vital tool in the research of batteries and their component materials. Atomistic models are key to building truly physics-based models of batteries and form the foundation of the multiscale modelling chain, leading to more robust and predictive models. These models can be applied to fundamental research questions with high predictive accuracy. For example, they can be used to predict new behaviour not currently accessible by experiment, for reasons of cost, safety, or throughput. Atomistic models are useful for quantifying and evaluating trends in experimental data, explaining structure-property relationships, and informing materials design strategies and libraries. In this review, we showcase the most prominent atomistic modelling methods and their application to electrode materials, liquid and solid electrolyte materials, and their interfaces, highlighting the diverse range of battery properties that can be investigated. Furthermore, we link atomistic modelling to experimental data and higher scale models such as continuum and control models. We also provide a critical discussion on the outlook of these materials and the main challenges for future battery research
    • …
    corecore